Supplement to:
Clinical Trials Do Not Provide Sufficient Accuracy for Studying Weak Factors Necessary For Curing Chronic Diseases


This appendix is provided by the authors to provide additional information and evidence for their study.


A. Changing Speeds of Health Properties in Chronic Conditions
The exemplar calculation shows how small changes cause chronic diseases.
(1) The glucose “normal range” is said to be 3.89-5.50 (6.10) mmol/L. In a

hypothetical person, the optimum level of 4.0 mmol/L will not result in fat accumulation. Assuming that the glucose level is raised by 25% or 1.0 mmol/L, and only 1% (e.g., 0.01 mmol/L) of the extra glucose is deposited on the body, it can create a serious consequence. The concentration of 1.0 mmol/L would be 0.001 mol/L⨯180 g/mol = 0.18 g/L. Each litter of blood contains additional 0.18 grams of glucose. If the person has an average heart output of 6 litters per minute, the total heart output volume each year is 6⨯60⨯24⨯365 = 3,153,600 L. So, the total extra glucose that would be available for storage as fats is 3,153,600 L⨯0.18 g/L⨯1%=5.7 kg, which is equivalent to 5.7*(4/9)=2.5 kg each year.
(2) Capillaries, important components of the micro-vascular network, are small blood vessels from 5 to 10 micrometers (µm) in the inner diameter. The capillary density in tissues and capillary inner diameters determine blood flow resistance in the segment. Flow resistance for any blood vessel segment can be computed by using R=8ηl/πr4, where, η is the viscosity of blood, l is the length of the blood vessel, and r is the inner radius of the blood vessel. Assuming that a capillary of 10 µm has been coated with 1 µm thickness fats in its inner wall, and a one-year exercise helps remove the deposited fats, the radium of each capillary is increased by (5-4)/4*100
= 25%. So, the exercise reduces the flow resistance of the capillary by 59%. The rate of removal is 1/365=0.0027 µm per day.
(3) A person with 10 cancer cells that grow at 0.1% (increase one net cell for one thousand cancer cells), the total cancer cell number is estimated to be 32.4 billion after sixty years. A 10% increase in the rate constant from 0.01 to 0.011 for a tumor of 500 cells will increase the final cancer cell number from 42 billion to 261 billion in five years. A 1% increase in the apparent rate constant, 0.01, will increase the final cancer cell number by a multiplying factor of 1.2 in five years (42.25 to 50.59 billion). Regardless of cancer causes and detailed mechanisms, cancer outcome depends on the imbalance between cancer cell death rate and cell division rate.
(4) Some human physiological properties must be maintained in narrow ranges. Normal body temperature is in a range from 97°F (36.1°C) to 99°F (37.2°C). The pH of the human blood is maintained in a tight range between 7.35 and 7.45, and any minor deviations from the personal optimal numbers can have health implications.
(5) In vertebral body replacement, the shape and size of a placement vertebral body structure must match exactly the original one to be replaced. If the replacement part has one millimeter extra, it may cause great discomfort and pain. The denture must match the mouth mounting member exactly. Structural imbalance can be found in joint diseases. A 1 mm outgrowth in bones in five years means a very small change in a given time interval.


B. Clinical Trials Were Mainly Used in Studying Acute Health Problems in the Early History


The world's first clinical trial is recorded in the “Book of Daniel” in The Bible

[Legumes, 2009]. In the Ambroise Pare trial conducted in 1537, the purpose was to treat wounds of battlefield-wounded soldiers [Legumes, 2009]. Two hundred years later, James Lind (1716-94), the first physician, conducted a controlled clinical trial to treat scurvy, a vitamin C deficiency [Legumes, 2009; Twyman, 2004]. The word placebo first appeared in medical literature in the early 1800s [Legumes, 2009]. In 1863, U.S. physician Austin Flint planned the first clinical study, comparing a dummy remedy to an herbal extract for patients suffering from rheumatism. The Medical Research Council UK carried out a trial in 1943 to investigate patulin (Penicillium patulinuman extract) treatment for the common cold [Hart, 1999] and this study was controlled by keeping the physician and the patient blinded to the treatment. A first randomized control trial was carried out in 1946 by the MRC of the United Kingdom for the treatment of streptomycin in pulmonary tuberculosis [Hart 1999; MRC 1948]. In parallel to the development of clinical trials was an evolution of the ethical and regulatory framework, which shaped the ethics of human experimentation and clinical practices.
The FDA became a law enforcement organization after the US Congress passed the Food and Drugs Act in 1906 and regulate drug approvals for the U.S.
After a randomized clinical trial is widely accepted, no study has been done to study whether it is a competent approach for studying chronic diseases.


C. Lack of “Nearly Identical Units” in Clinical Trials


To explore the limitations of population-based clinical trials, we examine the machine-repairing model used in the auto industry. Auto mechanics always focus on the structures and functions of individual cars, but never use information from other cars. This individualized approach is used in the entire machine industry, covering cars, TV sets, computers, airplanes, etc.
We establish two hypothetical repair models to explore whether a population-based repair model could work. In the first one, all cars made by Honda will be diagnosed and repaired by using the performance data which is acquired from all Honda cars such as Accord, Civic, Honda Fit, Honda CR-V, Honda Pilot, etc. In this hypothetical model, even though most parts are similar in structure and function, they vary in size, shape, and capacity. Most repair attempts would fail. If a lucky attempt makes a broken car run, the car most probably cannot be restored to its optimum condition.
In the second hypothetical model, car performance and repairing data is acquired from all makes and models of cars in the world. Such population data is then used as guidance in repairing any car from any make. In this hypothetical model, the performance data acquired from all cars are summed and averaged across makes, models, mileages, mechanical conditions, accident histories, etc. We anticipate that few or no mechanical problems in cars can ever be fixed.
Even a moderately complex machine such as a car requires a balance among individual components. Each component must be able to mount in an exact location, have a required installation space, have suitable structural strength, and optionally

use the right amount of power or energy. In complex machines, all key components must maintain balances in the fuel flow, heat exchange, lubricant usage, etc.


D. Large Personal Differences Implied by Exemplar Reference Ranges of Health Properties Established for the Human Population


We will show some of the well-known health properties in the table below. This reflects huge differences in the human population.
Table S1. Reference Ranges of Laboratory Tests

	
	
Specimen
	SI
Reference Interval
	
SI
Units

	Alanine aminotransferase
	
Serum
	
10–40
	
U/L

	Albumin
	Serum
	35–50
	g/L

	
Aluminum
	Serum, plasma
	
0.0–222.4
	
nmol/L

	Alanine
	Plasma
	210–661
	μmol/L

	Ammonia (NH3)
	Plasma
	11–35
	μmol/L

	β-Carotene
	Serum
	0.2–1.6
	μmol/L

	HDL (Adequate)
	Plasma
	1.03–1.55
	mmol/L

	LDL Near-optimal
	Plasma
	2.59–3.34
	mmol/L

	LDLBorderline high
	Plasma
	3.37–4.12
	mmol/L

	LDL High
	Plasma
	4.15–4.90
	mmol/L

	Cholesterol (total)
	Serum
	1.3–5.20
	mmol/L

	Platelet count
	Whole blood
	150–450
	109 L−1

	Red blood cell (Female)
	
Whole blood
	
3.9–5.5
	1012
L−1

	Red blood cell (Male)
	Whole blood
	4.6–6.0
	1012




	
	
	
	L−1

	White blood cell count
	
Whole blood
	
4.5–11.0
	109 L−1

	Fatty acids (nonesterified)
	
Plasma
	
0.28–0.89
	
mmol/L

	
Glucose
	Serum, plasma
	
3.9–6.1
	
mmol/L

	
Triglycerides
	Plasma, serum
	
0.11–2.15
	
mmol/L

	Vitamin A (retinol)
	Serum
	1.05–2.80
	μmol/L

	Vitamin B1 (thiamine)
	
Whole blood
	
74–222
	
nmol/L

	Vitamin B5 (pantothenic acid)
	
Whole blood
	
0.9–8.2
	
μmol/L

	Vitamin B6 (pyridoxine)
	
Plasma
	
20–121
	
nmol/L

	Vitamin B12 (cyanocobalamin)
	
Serum
	
118–701
	
pmol/L

	Vitamin C (ascorbic acid)
	Plasma, serum
	
23–85
	
μmol/L

	Vitamin D, 1,25- dihydroxy vitamin D
	Plasma, serum
	
42–169
	
pmol/L

	Vitamin E (α- tocopherol)
	Plasma, serum
	
12–42
	
μmol/L

	
Vitamin K
	Plasma, serum
	
0.29–2.64
	
nmol/L


Source: AccessMedicine [AccessMedicine].


E. Relatively Large Effects of Causal and Interfering Factors In Clinical Trials and Their Impacts on the Error Term


We have noted that the requirement of using “nearly identical units” in a clinical trial

is most probably violated if the trial is used to study chronic diseases. The trial has one treatment with an effect of μ (the first treatment factor u could be a random variable too). Each observed value of the health property to be measured in a trial may be expressed in the following equation.
xij=μ+δj +εij, (1)
where j=1, 2,…,+s (the number of treatments)
i=1, 2,…,+n (the number of data per treatment level)
where aεij=sεij+εij,	(2)
where sεij=s1ij+s2ij+…., sknm.	(3)
δj is the effect of treatment’s level j, εij is the uncontrollable random errors which must be much smaller than δj, sεij is the effect caused by a series of interfering factors, and sεij may be viewed as part of the apparent error because each data point is be affected by (s1..+s2..+…., sk..). The total number of interfering factors may be several, tens to even hundreds. Those factors affect every data point under any type of experimental design. aεij is the apparent error that is actually measured or detected in the trial. An implied presumption is that aεij must be much smaller than μ+δj. A trial conclusion may be still useful if the apparent error aεij (which includes εij, and s1..+s2..+…., sk..) is still much smaller than μ+δj so that the total interfering effects can be neglected in practice.
In traditional clinical trials, most sεij terms were not be identified, and nor controlled, they are simply added to the apparent error term aεij. Assuming that those uncontrolled factors follow normal distributions with respective parameters:
εij ~N(0, σ 2)E

s1ij~N(μ1, σ 2)1

s2ij~N(μ2, σ 2)2

….
skij~N(μk, σ 2)k



The apparent error term is the sum of the error εij, plus all uncontrolled interfering factors (s1ij+s2ij+…., skij), plus interaction terms, (which are omitted to make the model simpler). Assuming that all uncontrolled factors are independent, the apparent error aεij also follows a normal distribution [Wikipedia (2)]:


aεij~N(μt, σt2)
μt =μ1+μ2+….,+μk	(4)

σ 2=σ 2+σ 2+σ 2+,…., σ 2	(5)t	E	1	2	k



The apparent error term is routinely used in statistical analysis. Its size must be considered in a trial directed to evaluating weak treatment. This implies that if all interfering factors are used as part of the treatment, it can raise the treatment effect and reduce the variances of the error term.
Proof can be made by taking any two random variables, per known theorems or the known methods such as “the Sum of normally distributed random variables” [Wikipedia (1)]. The sum, which is also a random variable, has increased mean and combined variances. This summed random variable is further added to a third random variable. The trend of increasing variances for the sum of a limited number of random variables, s1 to sk, can be generalized.
All interfering factors are random variables with probability density functions f(s1), f(s2),…., f(sk). Therefore, the distribution of the sum of those factors could be created by drawing: when the error takes a particular value, s1.. can take any of its possible values according to its distribution probability density. Thus, the random variable s1.. is added to the error term εij to generate a new random variable. By repeating this process, all random variables from s2ij to skij are added into the error term to become a final apparent error. By repeating this process, one could get empirical distribution data of the sum of all random variables. By using a computer, one could create an apparent error distribution for any interfering factors that follow other types of distribution.


F. Hypothesis Test for Comparing Two Populations’ Means


In a typical clinical trial, the purpose is to determine if a treatment is different from control, the trial results in two sets of measures X=X1, X2…., Xn (for the treatment) and Y=Y1, Y2.	, Yn (for a control). We assigned a start patient survival data in days
in Table S2 below, and assuming that the treatment can be adjusted by strengthening or weakening its treatment effects, we will get the following data sets.
Table S2. A Hypothetical Test Data Using Two Population Means

	Ctrl Srvl. (days)
	

Yi-Y
	

(Yi-Y)2
	True Effect
(days)
	TX Srvl. (days)
	

Xi-X
	

(Xi-X)2

	130
	-75
	5625
	57
	187
	-75
	5625

	160
	-45
	2025
	57
	217
	-45
	2025

	190
	-15
	225
	57
	247
	-15
	225

	220
	15
	225
	57
	277
	15
	225




	250
	-45
	2025
	57
	307
	45
	2025

	280
	75
	5625
	57
	337
	75
	5625




From the hypothetical data, we got the following statistical parameters:

For the Control: n1 is the control sample number, Y is the survival mean for the control, and Sy2 is the mean squares of the control.

For the Treatment: n2 is the treatment sample number, X is the survival mean for the treatment, and S 2 is the mean squares of the treatment. Assuming that all model conditions are met (which is not possible due to the nature of this simulation) and that the variances in the control and treatment are consistent. We conduct the hypothesis test below:
Sy 2=     1		(Yi−Y )2x
∑

n1−1
Sx 2=    1	 ∑( Xi−X )2

n 2−1
2	(n 1−1) Sy 2+(n 2−1) Sx2



(6)

Sw =

n 1 +n2−2	(7)

t 0. 05 (n 1 +n2−2) is found from a t-table.



If X− Y ⩾t

(10) Sw∗√ 1  +   1  ,


reject H0.

0 . 05

n1	n 2

(8)

We got following statistical parameters: For the control:	|Y|=205, S 2=3150 For the treatment:		|X|=262, S 2=3150y
x

Sw2= (6−1)3150+(6−1) 3150
6+ 6−2	=3150

Find t value at p=0.05: t.05(10)=1.81.0. 05
n 1
n 2 =1.81 * √3150
n 1
n 2 = 58.65.


t	(10 ) Sw∗√  1 +   1 	 	 √  1  +   1 

Since X–Y =57 < 58.7, accept the null hypothesis. This outcome is against the

the assumed fact that the treatment can actually extend survival by 57 days. In conducting the hypothesis test, the final outcome is determined by comparing the treatment benefit X–Y with mean squares (S 2, S 2) or standard error attributable to personal differences. When survival times are widely dispersed among patients, the treatment's effect is hidden in the experimental error.x	y

The mathematical operations reveal that the hypothesis test outcome depends on the treatment's mean, X–Y, and Sy2 and Sx2. A spreadsheet data set can be constructed, which allows for changing the data in the first column so that one can see how hypothesis test outcomes would change with data being manipulated.
(1) If data dispersion is fixed, the chance of rejection entirely depends on the effect of the treatment. When Sy2=3150, Sx2=3150, and S 2=3150 are held constant, the point of rejection is a constant. When the treatment's effect is increased to 59 days or any reasonable days, the true treatment effect is confirmed at p=0.05.w

(2) If data dispersion is held as zero, survival times become an ordinary variable. Zero variances may be viewed as the limit of reducing variances. To avoid the density function vanishing, several hour times are added as noise to the control data set so that Sx2=0.035, Sy2=0.035, and S 2=0.035. In this case, even a one-day extension of survival times can be confirmed at p=0.05 (Ignoring practical difficulty in setting up H0 and H1). By changing survival times, the following results were obtained.w



Table S3. Rejection Value (X-Y) for the Same Probability Increases with Control’s and Treatment’s Variances.

	
2
Sy for Control
	0.035
	350
	3150
	12655
	35000

	
2
Sx for Treatment
	0.035
	350
	3150
	12655
	35000

	
2
Sw
	0.035
	350
	3150
	12655
	35000

	Rejection points (at p=0.05)
	>0.19
	>19.6
	>58.7
	>117.3
	>195.5

	
 
Min X-Y for rejecting H0
	1
	20
	59
	118
	196


The above table shows that when data dispersion increases, the rejection point at the same probability dramatically increases. However, if a patient population is selected with great differences in their baseline survival times, even 195 days survival time extension were not recognized due to the type II error (false acceptance of the null hypothesis). This problem is well known in statistics, but what is shown is that in most, if not all, clinical trials, expected variances are sufficiently large to result in consistent failure to recognize weak and slow treatment effects.
Here, the survival times are reasonable numbers found in cancer literature.

S 2 can be raised by casual and interfering factors shown in Model A in the Method Section.w

(3) When sample sizes (patient numbers) in the control and the treatment are sufficiently large, the acceptance region for Ho is determined by the following range:

√S2	S2
In this case, the rejection point is determined by using the normal distribution rather than the t-student distribution.X-Y ±
Z
0 . 05∗
y +
n 1
x
n2

(4) If the treatment has the effect of extending more survival time for each of the patients, it will result in a larger X–Y, which is directly compared with a value defining the rejection region. While multiple factors bundled into the treatment may increase data dispersion of the control and the treatment, it tends to move into the region for rejecting the null hypothesis faster, resulting in recognizing the overall effects of the treatment.


G. Hypothesis Test For Comparing Paired Differences


In the following hypothetical test, we show that variables controlled trials tend to fail to recognize single weak and slow factors, as a result of the acceptance of the null hypothesis.
There are N persons with a health property x being observed before treatment and after treatment. It is assumed that the health property before the treatment and after the treatment can be accurately measured. Treatment may comprise one treatment component or factor F selected from F1, F2…., Fn. For all patients, the trial would result in a series of paired data: X1=x’1-x1, X2=x’2-x2,…., Xn=x’n-xn, where x’ is a health property after a treatment, x is the value of the property before the treatment, and Xi means their difference.
In this test model, systolic blood pressure is used as the health property. The treatment is a weak single factor, which can alter blood pressure by only 1.5 mm Hg. We first tried six data points with a blood pressure range from 145 to 180 mm Hg, and then added some random noises to the data in an arbitrary way. We want to see whether the true effect of the treatment could be confirmed in the hypothesis test.
We generated the following data:
Table S4. Blood Pressure Data In a Hypothetical Trial

	Assume d Sys.
BP
mm Hg
	Treatment
Real Effect
	Fluctuation s
(mm Hg)
	Predicted Change
Xi=(y'i-
	Mean
changes X
	(Xi-X)2




	
	(mg Hg)
	
	yi)
	
	

	161
	-1.5
	2
	+0.5
	(-1.5)
	4

	180
	-1.5
	-2
	-3.5
	same
	4

	130
	-1.5
	2
	+0.5
	same
	4

	150
	-1.5
	-2
	-3.5
	same
	4

	145
	-1.5
	2
	+0.5
	same
	4

	179
	-1.5
	-2
	-3.5
	same
	4




By following statistical steps, it is assumed, obviously against assumed treatment effects, that the treatment had no real effect and all changes in measurements were caused by random error. The data would follow a distribution centered at zero. So, the task is to determine if y’i-yi belongs to the normal distribution, N(0, σ2). The test starts with setting a null hypothesis: E(X)=0, with the alternative hypothesis being, E(X)<0:
|X|= 1 ∑ Xi;



S2=

n
∑ ( Xi− X )2
n−1	(10)

(9)


If |X¯|>t

  s
a √n ,



(11)

reject the null hypothesis.
From the data, one can find s2= 4.9, SD=2.19, and find from t-distribution table, t0.05(5)=2.01.

t s

a √n


=1 . 79



Since the mean |X|= |-1.5| < 1.79, the hypothesis test accepts the null hypothesis. The finding that the treatment is ineffective is contrary to the presumed fact that the treatment has a 1.5 mm Hg reduction. Here, the treatment is a weak treatment. This outcome implies, as expected, that when error attributable to measurements is larger than the treatment effect, such a small effect is not recognized.
We set up a spreadsheet data set with variables that can be changed. We could repeat the same simulations by using a much larger data set. Measurement error may be much larger than 2 mm Hg, but this does not change the general pattern that weak treatment will not be recognized due to type II error.

S2 can be raised by all casual and interfering factors shown in Model A in the Method Section. Those causal and interfering factors make patients respond to the same treatment in more different ways.
Assuming that the same treatment is optimized by using several factors to treat blood pressure, the treatment could contain the following components:
(1) Jog one hour each morning, which is assumed to generate an effect of lowering 10 mm Hg by removing fats from the inner walls of blood vessels.
(2) Administrate a heavy metal deduction program, which is assumed to result in a 5 mm Hg reduction by reducing damages to blood vessels.
(3) Practice meditation daily to help blood vessels to achieve a relaxed state. It is assumed to reduce blood pressure by 5 mm Hg.
(4) Reduce and avoid refined foods, fast foods, fried foods, etc. for one year. It is assumed to reduce blood pressure by 5 mm Hg.
(5) Correct vitamin deficiency to improve the brain's regulatory function which is assumed to lower blood pressure by 5 mm Hg.
(6) Reduce life stress, job stress, emotional stress, etc. to improve hormonal regulations, which is assumed to reduce blood pressure by 5 mm Hg.
(7) Improve the kidney functions to improve the efficiency of removing metabolic toxic by-products. It is assumed to reduce blood pressure by 5 mm Hg.
(8) Adjust fat compositions for omega 6/3 fatty acids ratio to a normal range in diet, which is assumed to lower blood pressure by 5 mm Hg.
It is further assumed that those weak effects work slowly. If the trial is not sufficiently long, the treatment factors may deliver only part of their respective maximum effects.
The above factors may interact with each other. If blood vessels are enlarged, the brain's regulation of the vascular system is improved, damages to blood vessels are cured, toxic compounds are removed, and inflammation is reduced, total blood pressure reduction will be more than the sum of all assumed individual effects. If similar simulations are conducted by using various combination factors, the chances of rejecting the null hypothesis rapidly increase, thereby affirming the treatment's true heath benefits.
If more factors are included in treatment, the data set will come out with a practical effect of increasing the likelihood of rejecting the null hypothesis. This is because that |X| is increased while s2 is reduced by making all factors work in a similar way on all patients. This implies that optimization using as many factors can yield a result of the treatment. If the treatment comprises factors 1 and 2, the test could result in |X|=15>1.79. If the treatment comprises factors 2, 3, 4, 5, the test would result in a 20 mm Hg reduction. If all factors are used, the treatment might reach 45 mm Hg as the potential maximum.

Looking at the logic, the variances are caused by (Xi-X)2. If the treatment has a total net effect, the variances depend on how the treatment effects are dispersed among individual patients. If all patients are very consistent, and their net treatment effects are close to the mean, the test would be able to recognize smaller treatment effects. If some patients show big treatment effects, but others show small effects, the large differences will result in large variances and the value for defining the rejection region for rejecting the null hypothesis will increase per the equation (11).
Whether a true treatment effect can be detected by a hypothesis test depends on whether all patients respond to the treatment in a similar way. To have the true treatment effect determined accurately, a basic requirement is that all patients will respond to the treatment in a quantitatively similar way. In reality, a clinical trial must introduce massive variances attributable to personal differences in genetics, phenotypes, and mental conditions. If 3 out of 6 patients are cured, there is no point to use the three poor outcomes to refute the treatment benefits. There is no justification to use response dispersion as a basis to refute treatment benefits for individual patients.
This example is equivalent to Model B in the Method Section. When multiple factors are bundled together, the total treatment effects are much larger than the experimental error. This example also shows that cures for chronic diseases lie in optimizing as many factors as possible to achieve the best curative results.


H. Effects of Interfering Factors on Variance Analysis


We will review basic assumptions used in variance analysis and then will evaluate the presumptions when the clinical trial is used to study chronic diseases. Variance analysis is based on the following basic model:
xij=μ+δ j +εij	i=1, 2,…., n (Sample No. within a treatment)
εij ∼N ( 0, σ2)	j=1, 2,…., s (Treatment No)
In this statistical model, statistical parameters, the total sum of squares, error sum of squares, and treatment sum of squares can be determined by using the following equations [Roussas, 1997]:

¯x  = 1. j

n

n j
∑ x. j

j i= 1

(12)


s	nj2


SSE

=∑∑( xij
j=1 i=1

−x. j )


(13)


SSA


s
=∑ ( x. j

j=1


− x )2



(14)

SST =SSA +SSE	(15)
(n− s) SSA ∼F ( s−1,n− s) ( n−1) SSE


If ( n− s) SSA >F
(n−1) SSE	α


( s−1, n−s ) , reject H



0
(16)

Whether a data set comes out with its F-statistic falling within the acceptance or rejection region depends on the ratio of S2A to S2E. If variances between different treatments are large while the variances between individual data units are small, a large F-statistic will result. This will more likely reject the null hypothesis at a preset probability value.
Per the model assumption, every observed experimental value must be the sum of its population mean, plus treatment effect, plus random error. The true error term εij, must be attributed to a random error, which cannot be controlled due to natural variations in the process. It is typically assumed to be normally distributed with zero mean and constant variances. Some classical ways of generating random errors are throwing a die, flipping a coin, using an identical machine to produce products, production yields produced by the same production line, melting points of the same material, etc. The classical trials show that truly random errors cannot be controlled. S2E cannot contain causal and interfering effects unless they are small enough to be ignored for convenience.
While the ANOVA model does not directly impose any requirements on the quantitative values of S2A and S2E, there is an implied presumption that experimental error must be much smaller that the treatment’s effect to make a study result useful. Moreover, the F-test used for ANOVA analysis has additional assumptions and limitations. In practice, small effects of uncontrolled factors may be merged into εij, only if the total effect of those factors is sufficiently smaller than the treatment effect μ+δj. If the treatment effect is close to experimental error εij, F-statistic will be smaller which is compared with the S2A to S2E ratio, thereby causing the data to move toward the acceptance region of the null hypothesis. Only if μ+δj is much larger than εij, can an F-test have a practical meaning.
When clinical trials are used to study drug or treatment effects, εij comprises contributions of a large number of other interfering factors. In variance analysis in medical research, the apparent error terms εij can be divided into two terms in practice:
The apparent error, aεij=sεij+εij,
where εij is the true random error that cannot be controlled.

sεij = s1ij+s2ij+…., skij,
where k is the total number of uncontrolled interfering factors. Uncontrolled factors directly raise the error term’s mean and its variances.
When an influencing factor is randomized, what can be achieved is that the factor will have similar effects on all treatment groups and the control because the factor affects all data points in all groups by a similar probability. However, randomization cannot hold down the error term’s variances, nor its means. This can be easily seen by imagining how exercise, diet patter, emotional adjustment, toxic compound levels, etc. occur randomly among different patients. All patients in treatment and control do exercise at will. Some do a lot, some do little, and some do nothing.
Since exercise has great impacts on cancer survival times, exercise alone can make survival times in each group widely dispersed.
A condition for using clinical trials is that the total effect of the true random errors and all uncontrolled interfering factors is much smaller than the test treatment’s effect. This condition can be satisfied in trials involving acute diseases. This condition is essentially always breached in trials that are used to study chronic diseases. Even though those factors will not affect the differences between the treatment and the control, they raise the error term’s variances. A massively increased σ 2 still make trial outcomes meaningless. Since the effect of the treatment is small, the only way to improve the treatment effect is by using multiple treatment factors.t



I. Simulation Shows How Uncontrolled Interfering Factors Distort Test Outcomes in F Tests


In the next example, we will show how separating some interfering factors in a one-factor variance analysis will change the hypothesis test outcome. We create data for one factor variance analysis (when treatment levels B1, B2, B3, and B4 are ignored as if they did not exist).
Table S5. Hypothetical Cancer Survival Data for a Treatment Factor and Some Unidentified and Uncontrolled Causal and Interfering Factors.

	
	A1
	A2
	A3

	(B1)
	100
	320
	530

	(B2)
	500
	740
	970

	(B3)
	900
	1160
	1480

	(B4)
	1400
	1700
	1950





In a first hypothetical case, B factors were not identified, thus, the trial was designed as one-factor variance analysis. The results are:
SST=3,625,091
SSA=515,117, S2A=257,558 (df=2)
SSE=ST-SA=3,625,091-515,117=3,109,974 SSE=3,109,974, S2E=345,552 (df=9)
Since FA=S2A/S2E=257,558/345,552=0.75<F(2, 9)0.05=4.26, accept H0.
This case is similar to Model A where many unidentified causals and interfering factors raise the experimental error S2E.
In a second case below, both A and B factors are identified, assuming that treatment B is the sum of the effects of all unidentified and uncontrolled interfering factors such as genetic composition, age, sex, diet, exercise, stress level, lifestyle, emotional condition, chronic stress, etc. Now, the trial is a two-factor design. The new results are:
SST=3,625,091
SSA=515,116, S2A=257,558 (df=2) SSB=3,101,691, S2B=1,033,897 (df=3)
SSE=SST-SSA-SSB=3625,091-515,116-3101,691=8284 SE (df=6)=8,284/6=1381
Since FA=S2A/S2E=257,558/1381= 187>F(2, 6)0.05=5.14, reject H0 for factor A.
Since FB=S2B/S2E=1,033,897/1381=749>F(3,6)0.05=4.76, reject H0 for factor B.
SSE in the first trial is the sum of SSE and SSB in the second trial (3,109,974=8,284+3,101,691). When the error term contains variances of random and uncontrolled errors and variances of other causal or interfering factors, the true effects of A1, A2, and A3 on survival times are not confirmed.
When uncontrolled factors are not addressed, they are merged into the experimental error term and raise the means and variances of the error. A weak treatment effect cannot be determined due to inflated experimental error. The root cause can be traced to personal deviations in clinical trials, and statistical analysis makes the problem worse by rejecting whatever effect is close to the apparent experimental error. Indeed, one could see from the raw data that treatments A1, A2, and A3 have clear treatment effects.
While the simple data set is used for illustration purposes, the same conclusion could be seen from the computation steps.



J. χ2 Goodness-of-fit Test


In one sample test for a discrete outcome, hypotheses are set up against an appropriate comparator. The test relies on χ2 (chi-square) distribution which ranges from 0 to ∞.


1. The test details


The test selects a sample and computes descriptive statistics on the sample data, compute the sample size (n) and the proportions of participants in each response category (p1, p2,…., pk) where k represents the number of response categories, and finally determine the appropriate test statistic for the hypothesis test.


∑ (O − E)2E(		)

χ=


In the test statistic, O=observed frequency, and E=expected frequency in each of the response categories. The observed frequencies are those observed in the sample and the expected frequencies are computed. When conducting a χ2 test, the observed frequencies in each response category are compared with the frequencies that are expected if the null hypothesis were true. These expected frequencies are determined by allocating the sample to the response categories according to the distribution specified in H0. This is done by multiplying the total observed sample size (n) by the proportions specified in the null hypothesis (p10, p20,..., pk0).
To ensure that the sample size is large enough for the use of the test statistic above, the sample size meets the following condition: min(np10, np20,..., npk0)>5. The formula for the test statistic is given below. The test statistic for testing H0: p1=p10, p2=p20,..., pk=pk0. The critical value in a table of probabilities for the chi-square distribution with degrees of freedom (df)=k-1.
This goodness-of-fit test is based on an implied presumption that all differences between the observed frequencies and expected frequencies are due to uncontrollable sampling error. However, the outcome of each patient in clinical trials for studying chronic diseases actually depends on random errors and the effects of many interfering factors. Thus the outcome in each category is distorted by the factors. For example, an unknown factor makes some patients appear in a particular category. A factor causes N patients to move from p1 to p2 and causes M patients to move from p2 to p1. When N and M are of the same value or close, their effects happen to

cancel out. All of the effects of interfering factors are not reflected in the test statistic. Thus, the final test outcome depends only on sampling frequencies but has nothing to do with Ho and H1 hypotheses.


K. Common Frequency Tests


One type of test often used in biological science is to test the frequencies of certain events against expected frequencies.


1. The test details


A randomized trial is conducted to evaluate the effectiveness of a new pain killer as compared with an old pain killer. The trial comprises a total of 100 patients. The outcome is as follows:
H0: p1=p2, H1: p1≠p2 at α=0.05.


	Treatment Group
	Sample Size (n)
	Number of Patients With Improved Condition
	Proportions

	New drug
	50
	23
	0.46

	Old drug
	50
	10
	0.20






The sample size is adequate. There should be at least 5 successes and 5 failures in each comparison group: min(n1p1, n1(1-p1), n2p2, n2(1-p2))≥5.


 	p 1− p 2	z=
n 1
n 2

√^p (1− ^p)(  1 +   1 )


x 1+x 2
^p    = n1 +n 2



This test is based on an implied presumption that all differences between the observed frequencies and expected frequencies are caused by uncontrollable sampling error.


The outcome of each patient in a typical clinical trial involving a chronic disease actually depends on random errors plus a large number of factors that affect the development and reversal of the disease. Thus, the observed frequency in the disease category is affected by those uncontrolled factors. The above model does not reflect the complexity of the disease process. Even if a final test outcome happened to be right, it has nothing to do with Ho and H1 hypotheses. Improved conditions could be caused by other causal and interfering factors.



L. Randomization Cannot Cure the Flaw Caused by Personal Differences


Randomizing human subjects can reduce the different impacts of interfering factors on the treatment and the control. All interfering factors may raise treatment’s mean and the control’s means by a similar amount. However, randomization cannot eliminate the effects on the error’s means and error variances.
The benefits of randomization have been known for a long time. It is intended to avoid systematic bias as high age can influence surgical outcome [Kalish and Begg, 1985; Fleiss et al, 2003], and prevents selection bias researchers and patients from knowing to which group the subject will be assigned [Schul and Grimes, 2002]. All interfering factors, whether known or unknown, that may affect the outcomes can be similarly distributed among groups. This similarity is very important and allows for statistical inferences on the treatment effects. Also, it ensures that other factors except treatment do not affect the outcome. If the outcomes of the treatment group and control group show differences, this will be the only difference between the groups, leading to the conclusion that the difference is treatment-induced [Altman, 1991].
The above analysis is correct only if the implied presumption is held: the treatment’s effect is much larger than the effect of all sources of uncontrollable errors which include causal factors and interfering factors. This presumption fails to hold in a trial where the effect of the treatment is close to or even smaller than the total effect of the errors and interfering factors. If a statistical analysis can fix such a fundamental problem, developments in detection and separation technology would be unnecessary.
Interfering factors can raise the error term’s variances and means and thus cause the trials to breach the implied presumption used in statistical analysis. The null and alternative hypotheses are remote from the reality of the trial and the

the conclusion will be wrong except by accident [García-Pérez, 2012]. In other statistical models such as the χ2 goodness-of-fit test and frequency test, where the models take account only drawing errors, any hypothetical test outcome does not reflect reality.


M. Stratification Cannot Correct the Clinical Trial’s Bias


We can show that stratification cannot remedy the increased variances of the apparent error by interfering with factors. One can see from the following diagram:


Table S6 Stratification for four groups of patients, each at 50%.

	Data points
	Take 50%
	Results

	A1, A2, A3, A4, A5, A6
	3
	A1, A3, A6

	B1, B2, B3, B4, B5, B6, B7, B8
	4
	B2, B4, B7, B8,

	C1, C2, C3, C4
	2
	C2, C3,

	D1, D2, D3, D4, D5, D6, D7, D8 D9, D10, D11, D12, D13, D14
	7
	D1, D4, D6, D7, D9, D11, D13, D14



The issue we focus on is how the differences among individual patients might have contributed to the outcome of a clinical trial when the treatment effect is weak. The causal and interfering factors can randomly affect individual data. The variances from the first strata (A1, A3, A6), and all others still exist. The only impacts are due to changed sample size and reduced degrees of freedom.
If measurements within strata have a lower standard deviation, stratification gives a smaller error estimation. It may make measurements more manageable and/or cheaper when the population is grouped into strata. It increases representation for groups within the population.


N. Personal Differences Are the Main Cause of Simpson's Paradox


Simpson's paradox (Simpson's reversal, Yule–Simpson effect, amalgamation paradox, or reversal paradox) is well known for quantitative data: a positive trend appears for two separate groups, whereas a negative trend appears when the groups are combined [Wagner, 1982].

This result is often encountered in medical research statistics [Wagner, 1982; Holt 2016; Franks et al., 2017]. It was believed that the paradox can be resolved when causal relations are appropriately taken care of in the statistical modeling.
Although the past focus was on the differences between groups, the real cause is variances from individual persons. In studying weak effects, each person must be presumed to be different from another person. If the same trial is repeated N times by using the same subject, Simpson's paradox will not be seen. The regression pattern or data trend from a single person must be unique, given massive differences in personal genetics, phenotype, and emotional states. If a person’s data could be acquired, the data should have very small dispersion. When regression is conducted by using people from different subgroups, the subgroups may show different patterns. When their data are pooled, a different patter is seen. A striking example of subgroup difference is heart diseases between Asian people and Western people.
Regression analysis for weak and slow treatment is an attempt to build a trend across massive differences among individual persons. This data may be useful in social sciences, they have little utility as far as cures are concerned. The root cause is large variances at personal levels. The regression curve built on a large population does not apply to any person except by accident.


O. Clinical Trail Lowers Treatment Benefits by Improper Averaging Effects While Optimization Trial Enhances Treatment Benefits
We will construct a model which mimics a typical clinical trial to show another fatal flaw. We then compared it with an optimization trial. Assuming that a treatment has both beneficial effects, neutral effects, or adverse or negating effects on different patients, we will determine how a clinical trial performs, as compared with an optimization trial in personalized medicine.
Table S7 Indiscriminate Application of Treatments in Clinical Trail Degrades “Statistically Detected” Treatment Effects While An Optimization Trial Enhances Treatment Effect (Based on Hypothetical Data)

	Col. 1
	Col. 2
	Col. 3
	Col. 4
	Col. 5
	Col. 6
	Col. 7

	TXs or Cause
Name
	Assumed Ben. Resp. Rt. (%)
	Non- Resp. Rt. (%)
	Neg. Resp. Rt.
(%)
	Stat. Ben. Resp. Rt. X (%)
	Opt. Trial Tx
Comb.
	Opt. Trial
Ben. Resp. Rt. (%)

	A
	20
	65
	15
	5
	A+other
	>20

	B
	10
	84
	6
	4
	B+other
	>10

	C
	10
	82
	8
	[2]
	C+other
	>10




	D
	5
	91
	4
	[1]
	D+other
	>5

	E
	5
	85
	10
	(-5)
	E+other
	>5

	F
	3
	94
	3
	[0]
	F+other
	>3

	G
	2
	86
	12
	(-10)
	G+other
	>2

	Overall
	55
	
	[58]
	
	
	≥55


It is assumed that the frequency used in the table is a kind of property that can be used for statistical analysis of health properties.
In the table, columns 2-5 are for clinical trials, and columns 6-7 are for optimization trials. It is assumed that a disease is caused by seven causes A, B….G under column 1, and each treatment can correct one of seven causes. For convenience, each treatment is referred to by its correspondent cause (e.g., A, B,
…., G). It is further assumed that each treatment has true benefits on some patients, no effects on some patients, and negating effects on some patients, as shown in columns 2 to 4.
In a randomized clinical trial, a treatment under test is indiscriminately applied to all patients in the treatment group, and their “statistically determined” treatment effect is shown in column 5. When the treatment is used on a patient whose cause does not match the treatment, the treatment is assumed to cause adverse side- effects if the patient is unable to tolerate it. A misapplied treatment could turn an existing balance into an imbalance. Inadvertent side effects are ignored. A well-matched treatment does not cause negating effects. Thus, statistically detected treatment effects shown in column 5 are much lower than the assumed or true beneficial response rates (column 2). The statistically determined benefits of each treatment are due to the averaging effect of the treatment on all patients. If treatment extends lives for some patients but shortens lives by the same amount for the same number of patients, the statistical mean for the treatment is nearly zero.
Clinical trials tend to underestimate treatment benefits for chronic disease. When no averaging effects exit, all treatments A to G would be able to cure 55% of patients if each patient tries each of A to G treatments in turn, provided that each treatment does not cause inadvertent side effects. However, in reality, all treatments have side effects on some patients. The need to avoid side effects will limit how many treatments a patient can try. In reality, patients cannot try all available treatments one by one due to limited trial time, resources, and the need to avoid risks. Under the current medical models, doctors are generally unable to select treatments according to matched causes for patients. The best bet is thus using treatments with the highest response rates.
Influenced by the clinical trial approach, treatments C to G will not be approved for use or not offered as a first-line treatment. When those treatments are evaluated in clinical trials, they are indiscriminately applied to all patients. Since

they address rare causes, they can result in higher adverse response rates and negating response rates than beneficial responses rates shown in column 5.
Moreover, true response rates for those treatments cannot be correctly detected in the trial due to interfering effects of other factors. In addition, even if the beneficial effects of treatment E can be found, its use cannot be justified. Under the current treatment model, patients are not treated according to their specific causes. If treatments like E and G are randomly applied to patients, they could result in higher adverse response rates.
To avoid excessive risks of exposure, treatments C to G may probably not be approved for commercial use or not recommended for use by doctors. Only treatments A and B are available as the first-line drugs. Only “majority patients” whose disease causes are most popular in the population have available treatments. “Minority patients” whose diseases are caused by rare causes are out of luck. They always fall in non-response groups no matter which treatments they try. Thus, medicine will be able to deliver a response rate of 9% in this case even though the treatments would treat at least 55% by assumption.
Negating effects can be justified by using the balance theory for human health. Human health is maintained by many balances such as calorie balance, nutritional balance, bone formation, and resorption balance, pH balances, neuroendocrine/immune balance, metabolite balances, biochemical pathway speeds balances, etc [Booth et al, 2012; Gu et al. 2012; Schwalfenberg 2012; Lee et al.
2009]. If a chronic disease is caused by an imbalance, effective treatment must be used to correct the imbalance. If a wrong treatment is misused to disturb an existing balance, the treatment causes a new imbalance. Even vitamin daily intake can be both bad and good, depending on specific persons. Lowering omega 6/3 fatty acid ratio in patients who have a perfect ratio, using anti-virus drugs on a non- infected patient, over-detoxification of heavy metals, increasing calories intake on obese patients, altering diet to correct a non-existing gut microbiota problem, etc. will only harm the patient. Misapplication of treatment to wrong patients is presumed to harm health properties.
Frequency data used in Table S7 is for convenience. In statistical analysis, beneficial effects µ is estimated by a computed average of all data points for the treatment. Treatment has to negate effects if the treatment makes the measured health property of some treated patients worse. For example, the treatment shortens the survival times of treated patients. Negating effects may be non-obvious and do not have to carry negative signs. Negating effects bring down the statistical mean to lower the treatment effect, and thus have an effect of nullifying some or all beneficial effects for the treatment group. In our hypothetical model in Table S7, the treatment effect comes in three categories due to the unique nature of chronic diseases. However, they can have more categories.
In all well-known statistical models, treatment effects are assumed to be constants because statistical analysis treats treatment’s mean as a key comparative parameter. A common assumption used in the statistical model is that the same amount of treatment effect, µ, can be found on all patients in the treatment group, but not in the control group. However, this basic assumption does not hold.

Statistical models assume that differences among individual data points within the treatment group are caused by uncontrollable random errors. Acceptable random errors are those that arise from drawing processes.
The averaging effects caused by indiscriminate use of treatments are unique. Differences among individual data points are not caused by uncontrollable random errors but caused by complex, controllable disease mechanisms. Any of the treatments A to G in Table S7 work on different causes with distinctive response rates. Which patients will produce beneficial and adverse responses are determined by their matches. Both types of responses and amounts of responses depend on the patient health conditions and diseases causes. Detected values are not random variables. The measured health properties hop up and down along an imagined mean of the control according to disease mechanisms.
Leaving other problems aside, statistical models are not sophisticated enough to take into account three kinds of responses: beneficial responses, non-responses, and negating responses. What the statistical analysis does is lowering the treatment effect by averaging three types of responses, but treating their variations among data points as the experimental errors. The three known effects are completely different from the statistical model assumptions that all observations within a treatment or sub-treatment are similar and their differences between individual data points are caused by uncontrollable errors. Thus, the reality of human diseases is completely different from the statistical model, and the conclusions must be wrong except by accident.
The departure of the clinical trial from statistical models can be seen in numerous aspects. The beneficial effects and the negating effects of the treatment generally happen on different patients in the trial, and cannot be averaged.
However, beneficial effects on patient A and negating effects on patient B are averaged in statistical operations. For a fungible thing, getting 5 dollars and losing 5 dollars is equivalent to getting nothing as far as an economic effect is concerned. In reality, the benefits of the treatments are not zero even though the statistical mean is zero. The treatment can be used only to right patients to deliver beneficial effects, but not used on wrong patients to avoid adverse or negating effects. In reality, treatment A could deliver a 20% response rate rather than 4% if it is not indiscriminately used in a randomized trial.
Similar problems can be seen in other aspects. A dosage deduced from 10 years old and a dosage deduced from a 70-year-old can be summed up and averaged to become a statistical mean. A dose based on this mean will be useful to neither the 10 years old, nor the 70 years old, and nor an imagined 40 years old.
Similarly, an averaged heath property of two patients, one with liver disease and the other with kidney disease, can represent neither of them, and nor a patient with half a liver disease, and half a kidney disease. Similarly, the averaged health properties of many different types of cancer cannot represent any type of cancer in the world. The finding of a 7.4% complete response rate of chemotherapy for later-stage cancers cannot be used to predict a specific type of cancer or a specific person but is useful as a yardstick of the overall performance of medicine.
The averaging effect of beneficial and adverse responses in clinical trials

cannot be eliminated by increasing the number of patients in the trial, but can be reduced or substantially eliminated in an optimization trial.
Column 6 in the above table shows that if treatments A to G is for addressing different causes in an optimization trial, their performance will be much higher as shown in column 7. Each treatment is used on a sub-group of patients whose disease causes match the treatment. Since patients are not indiscriminately exposed to treatments, negating effects can be avoided. Moreover, multiple treatments may be used to treat patients with multiple causes. Thus, a patient may respond to the right combination even though the patient would not respond to any single treatment.
Thus, treatment A in combination with other treatments could benefit more than 20% of patients. If each treatment is tailored to specific patients, the treatment will not produce negating effects as in a clinical trial, and all treatments could be available for use. In personalized medicine, the total benefits of all treatments are expected to be higher than the assumed 55% and even minority patients will have treatments.
Due to huge differences among personal health properties and the high accuracy required to characterize chronic diseases, any treatment protocol developed from a population trial is not relevant to a specific patient. Any statistical means from a large population cannot be applied to specific patients, and a statistical mean from sufficiently similar patients cannot be used to other patients if they are not “sufficiently similar” to the sample patients. Health properties are not fungible things that can be exchanged between patients as abstract mathematical numbers. A person’s health properties cannot be changed to match the means of the population or the values of another person. Since diseases are caused by different causes, the notion of using a single treatment indiscriminately on a population is incorrect. The use of statistical analysis in optimization trials may be justified only if human subjects are sufficiently similar so that fluctuations in measured health properties are caused by uncontrollable factors and averaging is made merely to get rid of such fluctuations. The use of statistical means in such cases is justified on the ground of reasonable approximation but not theoretical correctness.
The different responses of patients to different treatments have huge impacts on trial outcomes. The beneficial effects, µ, of the treatment are a value when the treatment is correctly used on the right patients. When the treatment is indiscriminately used to a large population, the “statistically detected” treatment benefits are µs=µb- µn and can be expressed as µs=gµb, where g is the coefficient to describe degrading effects which are caused by averaging the negating effects of the treatment. g is smaller than 1. If negating effects µn is equal to or even larger than true beneficial effects µb, µs is zero or negative and g is also zero or negative. Some g values can be seen by comparing values at column 5 to values at column 2. The table shows that negating effects in a randomized trial degrade the treatment mean. When the same treatment is used in an optimization trial, its treatment benefits are raised by (1/g), where g would be from nearly zero to the theoretical maximum of 1. This analysis shows that a randomized trial can massively degrade the treatment mean, and this degrading effect is especially large for treatments intended for rare disease causes.
This same analysis can be used to treat other treatment effects such as survival times or continuous health properties. The method can be used to analyze

discrete health properties containing more than three categories. The g value can be estimated by using an empirical method. First, a statistically mean µs is determined by running a randomized trial and then determined by conducting a statistical method. Then, true beneficial effects µb for cause-matched patients are determined by running an optimization trial. Since the treatment is used only on patients, µb must be equal to larger than µs (µb ≥µs). Naturally, g=µs/µb will be in the range from 0 to 1. One should expect that statistical mean µs can be negative if the treatment has large negating effects. Thus, clinical trials result in rejecting the treatment even if the treatment could be the best cure for rare diseases if it were used for specific patients.
P. Comparison Between Multiple Factors Optimization Trial and Randomized Controlled Trial (A Model Study)


We disclose a multiple factors optimization model that is superior to the traditional clinical trial model.


1. Basic Model Assumptions and Two Models


In this model, a chronic disease is caused by a plurality of interfering factors, s1, s2,…, sk, which can affect a health property that is used to measure the disease. It is assumed that a plurality of factors contributes to the diseases. They may be referred to as cause factors, interfering factors, or weak factors. Their effects are additive and all interaction terms among them are ignored for convenience. The measured health property may be a hazard rate, survival time, a vital life sign, a laboratory analysis parameter, etc. The effects of all factors are realized by a reasonable time internal. There is an uncontrollable error in measuring health property ε.


ε ~N(0, σ 2)	(the true error)E

s1~N(μ1, σ12)	(a first interfering factor, which may be a treatment) s2~N(μ2, σ22)	(a second interfering factor)
….
sk~N(μk, σ 2)	(the kth interfering factor)k



We will evaluate the performance of two treatment models: the classic clinical trial and a multiple factor optimization trial. For convenience, we assume that all k interfering factors have an equal effect: μ1=μ2=μk=μ, and variances σE =σ1 = σ22	2
2	2	2

=σk =σ. The variances of true error are sufficiently small relative to any of the

interfering factor so that it can be ignored for convenience. Now, two different types of trials are used to evaluate a treatment for the disease.
A classical clinical trial (Model A). In a classic clinical trial, only one treatment factor s1 is selected as the treatment. The clinical trial is designed by randomizing human subjects so that s2, s3,…,sk will be going into the error term. The treatment effect is s~N(μ, σ2), while the apparent error term is aε~N(kμ, kσ2+σ 2) because the means and variances of k-1 causal and interfering factors are added into the error term. Since σ2=σ 2, σ 2 can be neglected so that aε~N((k-1)μ, kσ2). In this case, the treatment effect is only a fraction of the apparent error kμ. It is anticipated that the treatment effect will not be “found” due to the large mean and large variances of the apparent error term.E
E	E

An optimization trial (Model B). All known factors s1, s2,…, sk are used to optimize the effect of treatment s1. A mini-trial is designed with all k factors controlled for human subjects. All factors, s2, s3,…,sk, are used in the treatment group, but not used in the control group. In an exemplar trial for studying a cancer treatment, high omega 6/3 ratios in the treatment group are corrected, but not in the control group; lack of dietary fiber intakes are corrected in the treatment group, but not in the control group, and toxic metals are detoxified in the treatment group, but not in the control	All the k factors are controlled in the trial. When all relevant
health properties are well controlled, patients are “sufficiently similar” so that summing up and averaging health properties does not amount to “averaging two different things.”
In such an optimization trial, the total treatment effect, st~N(kμ, kσ2), is k times larger. The apparent error term is much smaller because all k-1 interfering factors are separated and thus dropped out from the error term. The apparent error is aε~N(0, σ 2). All interfering factors work in a similarly adverse way within the control group and work in a similarly beneficial way within the treatment group.E

Assuming that the true error σ 2 is close to σ2, the apparent error can be expressed as ε~N(0, σ2). Compared with the classical trial, the treatment effect of the optimization trial is increased by k times while variances for the apparent error are decreased from kσ2 to σ2. It is anticipated that the trial has a much higher sensitivity to “find” the total effect of all casual and interfering factors. k is the number of interfering factors plus the treatment s.E

2. Performance Differences Between a Randomized Trial and An Optimization Trial Now, we estimate how the optimization trial will improve the performance of
hypothesis test results in three situations. In the analysis below, the negating effects
caused by averaging are ignored for convenience.
(1) In conducting a hypothesis test using two means (see Section F). Z statistic is computed by using the following equation:
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By using the optimization trial, X-Y is increased by k times. s 2 is the variances within the treatment group and s 2 is the variances of the control group. The variances of the error term are reduced from kσ2 to σ2. This means that the Z statistic is increased by k*√k. A similar result can be found for the T statistic when the sample sizes are small. T statistic is computed by using the following equation:
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By using the optimization trial, X-Y is k times larger, while sw is reduced by about √k times, the total gain is estimated to be k*√k. If optimization is done with one treatment factor plus 9 interfering factors (k=10), the total increase in T statistic is about 32 times.
(2) In conducting a hypothesis test using paired data (see Section G), using the following equation:

t  =|X¯| √n
a	s

The |X| is expected to be k times larger, while the standard error, s, is reduced
by about k times, the total increase in T statistic is estimated to be k*√k.
(3) In conducting F-test, the F statistic is determined by following
(n−s ) S1
F  (s−1, n− s )=
α	( n−1) SE
In the above equation, s denotes levels that may be viewed as yes and no two levels. Assuming that the effect of s1 is the same as the error term and each of the interfering factors, the treatment effect is increased by k times while the error term sE is decreased by √k times. So, the F statistic is also raised by about k*√k.
Treatment for the chronic disease may contain one, tens, or more factors. In cancer cases, this is not an unreasonable number. However, not every known factor is relevant to any particular cancer patient. A plurality of factors may affect cancer outcomes but the specific mixing of specific causal or interfering factors is unique for each patient. For each patient, the right set of factors must be selected. Correcting “a problem” that does not exist in a patient can only have a negative effect.
It is well known that a large number of known factors affect cancer outcomes by different degrees. Exercises are found to have huge impacts (28%–44% reduced risk of cancer-specific mortality found in the review by Cormie et al. 2017. Since other factors affect both the exercise group and non-exercise group, the true benefits of exercise may be underestimated. Emotional states have been found to have great impacts as they always exist among all cancer patients. Unhealthy diets affect patients in different ways and clinical trials yield only average effects. Pollutants are found to be weak because they are not always the causes of cancer in all patients. Thus, true effects of diets and pollutants are brought down by averaging population data:

that is the average of good response, neutral response, and adverse responses. It is expected that diets and pollutants have greater impacts on certain patients who happen to have such problems. It can be reasonably expected that if multiple relevant factors are selected and used in an optimization trial, much larger treatment effects will be found.
If the effect of a factor is a constant with variances being close to zero, then variances of the error term do not depend on the number of cause factors used in optimization. In this extremely unlikely scenario, optimization with k factors can still raise T statics, Z statistic, and F statistic by their additive effects, synergistic and interactive effects, and thus raise treatment benefits by great margins. However, many factors such as diets, nutrients, pollutants, exercise patterns affect diseases in a random fashion and are expected to work in different degrees. Even if human subjects are randomized, those factors affect some patients beneficially, have no effect on some patients, affect others adversely; and if they do work, they may work by different degrees. If they are not controlled, they must raise the variances of the error term. Thus, an optimization trial can reduce error variances and improve the ability to detect treatment effects.
Traditional clinical trials have a more serious bias in studying toxins. Known toxic compounds are in the order several thousand. If one hundred similar toxic substances are studied together, such an optimization trial can detect harmful effects more than the current trial focusing on a single compound. Z statistic, T statistic, and F statistic would be 1000 times larger than that for studying a single substance. This implies that a population study is an improper approach for assessing toxic compounds. Every single compound may escape from being caught, but any of many combinations of the compounds would cause detectable damages to personal health.
The problem addressed in the study is well known in statistics as a general principle. What is omitted is that, in clinical trials, expected variances are sufficiently large to result in consistent failure to recognize weak treatment effects. Even though the statistical mean of the treatment will be centered at the mean, the variances approach zero when the number of patients in a clinical trial is sufficiently large. The three gains, (1/g)* k*√k, are respectfully for avoiding negating effects, the addition of effects of multiple interfering factors, and reduced variances from controlling interfering factors, which cannot be corrected by increasing human subject numbers.
Due to the similar statistical logic behind all hypothesis tests or confidence intervals, the same trend should be seen for hypothesis tests using other distributions. The root cause is a breach of the implied presumption that the sum of all experimental errors must be much smaller than the treatment effect.
3. Large Sample Size Does not Affect Relative Merits
Finally, we determine if the relative disparity in performance between randomized clinical trials and optimization trials can be changed by increasing sample sizes.

The basic model: a treatment is administered on a treatment group and is compared with a control group. The true experimental error is sufficiently small so that it can be negated. Thus, errors within the treatment and within the control are mainly caused by one or more co-causal and interfering factors. Z statistic can be computed by using the following equation.



Z −Stastic =( ¯X−Y¯ )÷√(t	c	E


σ2	σ 2
n 1 + n 2c )
t



	
X is the treatment’s mean and Y is the control’s mean. For convenience, we use equal sample sizes (n1=n2=n), taking Y as a zero. The error within a treatment and the control are treated as equal so that σ 2=σ 2= σ 2 so that Z statistic becomes:

n Z Statistic =( X¯ / σ E )  2
If Z statistic > Z0.05=1.645, reject the null hypothesis. This condition leads to the following equation:√
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(17)

Whether a statistical analysis will correctly determine the treatment effect would depend on the ratio of (X/σE).

Table S8 Treatment X to Error Ratios (X/σE) That Could Be Enough to Reject the Null Hypothesis at an α Level for Different Sample Sizes

	Sample Size n for Each Arm
	α Level (Preset value)
	Zα Value
from The Table
	(√(2/n))*Zα
	

X Must be Larger Than Below Values to Reject Ho Hypothesis

	50
	0.05
	1.645
	0.20
	0.20*σE

	100
	0.05
	1.645
	0.14
	0.14*σE

	1000
	0.05
	1.645
	0.045
	0.045*σE

	10000
	0.05
	1.645
	0.014
	0.014*σE


The table shows that the sensitivity of hypothesis tests increases with sample size n. For a treatment intended for chronic diseases, X is expected to vary small while a large number of co-causal and interfering factors can enlarge σE or σE. As long as the ratio is not larger than those shown in column 5, the hypothesis test outcome will be wrong.2

The averaging of beneficial effects and negating effects may cause the



statistically determined treatment effect X reaches zero or negative. Under this circumstance, the outcomes of randomized clinical trials are wrong. Sample size cannot alter relative performance differences between randomized trials and optimization trials because the sensitivity gain does not depend on sample size. The first term, (1/g), is stabilized by large sample sizes; the second term k depends on how well each of the interfering factors is controlled in the optimization trial. The third term (√k) does not depend on sample size (even though, the standard error of the apparent errors is approaching zero when n is approaching infinity).



REFERENCES


Altman DG. Randomisation. BMJ 1991; 302: 1481-2.
García-Pérez MA, Statistical conclusion validity: some common threats and simple remedies. Front Psychol. 2012; 3: 325.
Hart PD. A change in scientific approach: from alternation to randomised allocation in clinical trials in the 1940s. BMJ. 1999 Aug 28;319(7209):572–573.
Holt, GB (2016). Potential Simpson's paradox in multicenter study of intraperitoneal chemotherapy for ovarian cancer. Journal of Clinical Oncology, 34(9), 1016-1016.
Fleiss JL, Levin B, Park MC. A statistical Methods for Rates and Proportion. 3rd ed. Hoboken NJ: John Wiley and Sons; 2003. How to randomize.
Franks A, Airoldi E, Slavov N. (2017). "Post-transcriptional regulation across human tissues". PLOS Computational Biology. 13 (5): e1005535. doi:10.1371/journal.pcbi.1005535. ISSN 1553-7358.
Gu H, Tang C, Yang Y. Psychological stress, immune response, and atherosclerosis. Atherosclerosis. 2012;223(1):69–77.
Kalish LA, Begg GB. Treatment allocation methods in clinical trials a review.
Stat Med. 1985;4:129–44.
Lee SJ, Trostel A, Le P et al. Cellular stress created by intermediary metabolite imbalances. Proc Natl Acad Sci U S A. 2009 Nov 17; 106(46): 19515–19520.
Legumes C.R. lemons and streptomycin: A short history of the clinical trial.
CMAJ. 2009;180:23–24.
Roussas GG. A Course in Mathematical Statistics (2nd Ed). Academic Press.
1997; 327-375;440-462.
Schwalfenberg GK. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health? J Environ Public Health. 2012; 2012: 727630.

Schul KF, Grimes DA. Allocation concealment in randomized trials: Defending against deciphering. Lancet. 2002;359:614–8.
Twyman RA. A brief history of clinical trials. The Human Genome. 2004. Sep, http://genome.wellcome.ac.uk/doc_WTD020948.html. Accessed on Oct 2009 [this article address is changed].
MRC Streptomycin in Tuberculosis Trials Committee. Streptomycin treatment of pulmonary tuberculosis. BMJ. 1948;2:769–83.
Wagner CH. "Simpson's Paradox in Real Life". The American Statistician.
February 1982.36 (1): 46–48.
Wikipedia (1). List of incurable diseases. https://en.wikipedia.org/wiki/List_of_incurable_diseases. Last assessed on July 2, 2019.
Wikipedia (2). Sum of normally distributed random variables https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables. Last assessed on July 2, 2019.
[bookmark: _GoBack]
