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Introduction

Approximately 19.3 million new cases of cancer and 10.0 
million deaths from cancer were registered worldwide in 
2020. According to WHO [1], cancer is the sixth leading cause 
of death globally. GLOBACAN [2] predicts that in 2040, new 
cases if cancers would have risen to 28.4 million. Cancer cell 
development is a multifaceted process that involves genetic 
mutation of normal cells and physiological changes that affect 
the body’s defence mechanism [3]. The transformation of 
normal cells into cancerous cells necessitates the sequential 
acquisition of mutations resulting from genome damage 
caused by DNA replication errors, chemical instability of DNA 
bases, or attack by oxidative species and other free radicals 
generated during metabolic processes [4]. 

Cancer cells have different strategies in escaping destruction, 
and these are captured in its hallmarks [5]. The ability to evade 
immune suppression is one of cancer’s hallmarks. Tumor 
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cell transformation triggers innate and adaptive immune 

responses, which aid in the elimination and control of cancer’s 

early stages [6]. The cancer immuno-surveillance or immune-

editing mechanism allows the immune system to recognize and 

kill nascent cancer cells [7]. Through immuno-surveillance, 

immune cells can inhibit tumour growth through malignant 

cells recognition and rejection [8]. Studies associated with this 

have led to discovering novel immunotherapeutic approaches 

towards cancer [9-11]. 

In recent times, immune checkpoint inhibitors (ICPIs) 

have changed the view of oncotherapeutics. Spain, et al. [12] 

reported that Blockade of CTLA-4 and PD-1 (PD-L1) antibodies 

enhances immune responses against tumor cells in a variety 

of cancer forms. Although these blockades are currently used 

to treat colorectal, prostate, lymphoma, melanoma, lung and 

mesothelioma cancers, as well as renal cancer, research into 

their effectiveness in other cancers is ongoing [13,14].
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Immunotherapy and cancer treatment

The immune system recognises foreign materials 
and eliminates them through immunological reactions. 
Immunotherapy is an advancement in cancer treatment 
options. It is a good example of precision medicine because 
it utilises a more specifi c approach than traditional cancer 
treatment methods; surgery, chemotherapy, and radiation. 
It uses the immune system in fi ghting cancer. Loose and 
Wiele [15] reported that novel methodologies in cancer 
immunotherapy are developed from enhanced knowledge 
of immune recognition, regulation and tumour escape in 
line with tumour biology and immunology. Tumours can be 
generated from weak immunologic cancer cells [16], while 
high immunogenic variants can be eliminated in immune-
competent hosts due to immune-surveillance [17]. 

Immunogenic cancer types are identifi ed by the noting that 
they are more common in immunocompromised people 
who are treated with immunosuppressive drugs. Tumor 
immunogenicity is determined by the tumor cell itself, as well 
as factors in the tumor’s microenvironment, like the role of 
competent antigen-presenting cells (APCs) such as Dendritic 
Cells (DCs) [18]. Tumour antigenicity and antigen processing 
and effi ciency presentation are essential determinants of 
tumour immunogenicity [19]. Thus, in an immunosuppressed 
population, the APCs, and antigen processing of cancer cell 
types may serve as indicators and markers of their presence. 
Also, immune cells interaction with tumour cells could be sub-
type specifi c. Lhuillier, et al. [20] suggest that a higher load 
of mutation elicits tumour-specifi c antigen production in high 
levels and can engender stronger immunological responses. 
When compared to the luminal A and B subtypes, triple-
negative breast cancer (TNBC) and human epidermal growth 
factor receptor 2 (HER2-positive) breast cancer has more 
genomic instability [21], thus an to increased DNA damage [22]. 

During tumor growth, the immune system interacts 
with cancer cells and goes through three phases: 
elimination, equilibrium, and escape. In the elimination/
immunosurveillance phase, effector immune cells recognize 
tumor antigens and destroy cancer cells [23]. There are 
three roles of elimination in tumour prevention. First, is 
through viral suppressive mechanism or viral elimination 
mechanism. Some viral infections induce cancer [24]. Next, 
is through pathogen elimination mechanism to prevent 
an infl ammatory environment that aids tumourigenesis. 
The last role of elimination in tumour prevention is via the 
tumour cells identifi cation and elimination mechanism on the 
expression of Tumour-Specifi c Antigens (TSAs). Patients with 
pre-existing anti-tumour immunity and a higher number of 
tumour infi ltrating T cells have a better chance of surviving 
longer [25]. Furthermore, it’s been proposed that the presence 
of effector immune cells in premalignant lesions serves as a 
counterbalance to danger signals [25]. 

Immune-suppressive mechanisms and alternatively 
activated type-2 macrophages (M2)) maintain a balanced 
number of effector immune cells in the equilibrium process 
(e.g. regulatory T cells (Tregs), Myeloid-Derived Suppressor 

Cells (MDSC). Tumour-infi ltrating cells play a role in cancer 
immune response modulation [26]. Tanchot, et al. [27] found 
that when Tregs are found in the blood and microenvironment 
of different tumor types, they interfere with the innate and 
adaptive immune systems by suppressing T-cell response and 
Natural Killer (NK) cell proliferation and function. Immune-
suppressive pathways outcompete effector immune cells during 
the escape process, resulting in cancer immune evasion and 
tumor development [20,28]. The seventh hallmark of cancer [5] 
is immune-surveillance evasion, and the mechanism by which 
this is accomplished is addressed in the subsequent outlines.

Mechanisms of cancer immune evasion

Through the expression of tumour variants and suppression 
of immune environment, cancer cells evade immune attack. In 
this article, the mechanism by which T-cells destroy cancer 
cells is fi rst discussed before cancer immune evasions’. 

T-cell receptors are activated as they bind to antigen 
peptides on the Major Histocompatibility Complex (MHC). 
CD8+ (Cytotoxic T-Lymphocytes) CTLs are activated after 
antigen recognition by MHC I and can destroy targeted cancer 
cells using death cell ligands including Tumour Necrosis Factor 
Apoptosis-Inducing Ligand (TNF- RAIL) or the perforin/
granzyme pathway [29,30]. Adaptive cancer immunity is 
also ensured when CD4+ T cells recognize MHC II-presented 
peptides [31]. CD4+ T cells can help dendritic cells (DCs) induce 
CTLs, and cytokines like Interleukin-2 (IL-2) can help activated 
CTLs expand clonally [32]. Activated CD4+ T cells improve 
the function of innate immunity cells, such as macrophages 
and NK cells, by secreting more Interferon-Gamma (IFN-). 
[33]. Figure 1 below shows the mechanism of tumour immune 
evasion.

Role of MHC I and IFN signaling

Tumor cells downregulate MHC I molecules, proteasome 
subunit LMP 2 and LMP7, and transporter associated with 
Antigen-Presenting Protein (APP) in order to avoid being 
recognized by CD8+ CTLs and destroyed (Fig. 1). IFN-induced 
signaling facilitates antigen presentation in tumor cells, 
and Aplnr and Ptpn2 and CDK4/6 have recently been found 
to upregulate and downregulate IFN signaling, respectively 
[23]. Upregulation of Ptpn2/CDK4/6 and the downregulation 
of IFN signaling/Aplnr can dampen antigen presentation and 
contribute to tumor immune evasion [34-36]. As a result, 
Aplnr’s upregulation of IFN signaling and Ptpn2’s and CDK 
4/6’s downregulation facilitate antigen presentation and 
immune checkpoint blockade.

Concerted efforts from CTLA-4, PD-1 and PD-L1

These molecules can both inhibit T-cells and activate 
immunosuppressive regulatory T-cells, making them 
important tools for controlling T-cell activity and proliferation. 
The Tumour Microenvironment (TME) and lymphoma cells 
both express PD-L1, while PD-1 is mainly expressed in the 
T-cell microenvironment. T cell exhaustion is caused by cancer 
cells increasing PD-L1 and PD-1 expression or promoting PD-
L1 and B7-1/2 binding to the immune checkpoint proteins 
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PD-1 and CTLA-4 [28,37]. CTLA-4 is a member of the 
immunoglobulin superfamily. CTLA-4’s main function is 
T-cell inactivation, which is accomplished by two distinct 
pathways. Upregulation of infl ammatory signals (such as IFN-
, LPS, and TNF-), oncogenic signals (Myc, Cdk5, Ras), and 
CMTM6- and CDK4-mediated post-translational stabilization 
contribute to T cell exhaustion via PD-L1 expression [38]. 
T-lymphocyte fatigue, on the other hand, may be caused by 
KEAP/PTEN downregulation. Immune evasion is often due to 
tumour cells secreting immune-suppressive molecules into 
the Tumour Microenvironment (TME) (e.g. IL-8, IL-10, IL-18, 
VEGF, gangliosides, ROS, TGF-, and K+) [23].

Alteration of metabolic functions

The alteration in metabolism is one of the hallmarks of 
cancer cells. Similarly, tumor cells can impair T-cell function 
by changing metabolic activities in the TME. Carbohydrate 
metabolism (such as glycolysis, Kreb’s cycle, and Pentose 
phosphate pathway), amino acid metabolism, lipid metabolism, 
and nucleotide metabolism are all altered in the TME to improve 
cancer survival. Tumour cells reduce factors that promote 
T cell activity, such as oxygen, pH, and biomolecules, while 
simultaneously increasing the concentration of molecules 
that inhibit T cell function, such as adenosine, Prostaglandin 
E (PGE), and lactate [23]. Tumour cells have a higher rate of 
glucose oxidation, resulting in lower glucose supply in the TME 

[39,40]. Tripartite motif 47 (TRIM47) also speeds up aerobic 
glycolysis and tumor progression in pancreatic cancer by 
controlling fructose-1, 6-biphosphatase (FBP1) ubiquitination 
Lei, et al. [41]. This happens because cancer cells require 
energy in the form of ATP to proliferate, expand, invade, and 
spread (Figure 2). Fatty acid synthesis, amino acid synthesis, 
and nucleic acid synthesis all take place during glycolysis. 
Often, for the same reason, amino acids like glutamine are used 
to replenish substrates in the Tricarboxylic Acid Cycle (TCA). 
Glycolysis occurs at a faster rate in cancer cells than in normal.

Furthermore, immune suppressive cell populations in TME 
are a key contributor to T cell dysfunction. Tregs coordinate 
a T-cell dysfunction system in which suppressive modulators 
(e.g. TGF-, IL10, gangliosides), metabolites (e.g. PGE), MDSC, 
and tumor-associated macrophages (TAM) improve its activity 
[28].

Cancer immune evasion is caused by complex interactions 
that take place at the immune checkpoint. Immune checkpoint 
blockades work by blocking or inhibiting the pathways that 
cause immune evasion by causing T-cell dysfunction.

Immune checkpoint inhibitors

Immune checkpoint inhibitors (ICPIs) have led to signifi cant 
advances in cancer care. Immune checkpoint inhibitors improve 
anti-tumour immunity by inhibiting negative pathways that 

Figure 1: Illustration of cancer immune evasion mechanisms.
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prevent T cells from working properly. As a result, blockades 
with antibodies against CTLA-4, PD-1, or their respective 
ligands, B7-1/2 and PD-L1, improve immune responses against 
tumor cells [42], as their upregulation is linked to an increased 
risk of cancer [6,44]. 

Anti-PD-1 (nivolumab and pembrolizumab), anti-CTLA-4 
(ipilimumab), and anti-PD-1/CTLA-4 (nivolumab–ipilimab) 
immunocheckpoint inhibitors have improved cancer care. 
Pembrolizumab and nivolumab, anti-PD-1 inhibitors, 
are superior to ipilimumab, an anti-CTLA-4 inhibitor, 
in terms of overall and progression-free survival in the 
fi rst-line environment [43,44]. Anti-PD-1 (nivolumab and 
pembrolizumab), anti-CTLA-4 (ipilimumab), and anti-PD-1/
CTLA-4 (nivolumab–ipilimab) immunotherapy regimens 
result in a higher response rate and longer time to progression 
than either agent alone [44]. Studies in advanced melanoma 
have the most justifi cation for the use of ICPIs [10]. In cancer 
patients with resected stage III melanoma, ipilimumab 
improves survival [45].

CTLA-4 inhibition

CTLA-4 is a member of the CD28:B7 immunoglobulin 
superfamily, which is expressed on the membranes of effector 
T-cells and Tregs [46]. The fi rst signal for T-cell activation is 
the recognition of the MHC-bound tumour antigen by a specifi c 
T-lymphocyte receptor. The co-stimulatory involvement of 
CD28 receptor on T cells by B7 on Antigen Presenting Cells (APC) 
occurs after full T-cell activation [47]. There are assumptions 
that anti-CTLA antibodies engender tumour rejection by 

inhibiting negative signals from B7-CTLA-4 interactions [48]. 
However, it has been reported that the anti-CTLA-4 antibody 
Ipilimumab does not block the B7 trans-endocytosis plasma 
levels when its concentrations are considerably higher than 
that of the plasma levels [48]. CTLA-4 is upregulated after a 
naive T-cell is stimulated, competing with CD28 receptor for 
B7, and ultimately suppressing T-lymphocyte function. As a 
result, CTLA-4 monoclonal Antibody (mAb) promotes T-cell 
activation, functionality, and proliferation while inhibiting 
Treg suppressive activity [49]. In metastatic melanoma, 
ipilimumab was the fi rst CTLA-4 blockade to demonstrate 
an improved survival rate [50,51]. CTLA-4 is a main receptor 
found on the surface of T lymphocytes that sends an inhibitory 
signal to T lymphocytes through its ligand B7-1/2, inhibiting 
T-cell activation [52]. As a result, blocking CTLA-4 eliminates 
the inhibitory signal, resulting in increased T-cell activation. 

PD1/PD-L1 inhibition

Tumor cells and myeloid cells in the host can also express 
the immunosuppressive ligand PD-L1. T-cells express PD-1, 
which binds to PD-L1, which is expressed on cancer cells, and 
PD-L2, which is expressed on other immune cells. Since PD-
L1-expressing cells can cause activated T lymphocytes to die by 
binding PD-L1 to the cognate receptor PD-1 (CD279) on T cells, 
PD-L1-mediated inhibition of activated PD-1+ T-lymphocytes 
is thought to be a major immune evasion mechanism in tumor 
cells. Blocking PD-L1/PD-1 signaling prevents tumor growth 
by reducing tumor-induced immune suppression. PD-1 
antibodies like nivolumab, pembrolizumab, and pidilizumab, 
as well as PD-L1 antibodies like Durvalumab MEDI4736 and 

Figure 2: Glucose metabolism regulation in cancer cells.
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Atezolizumab MPDL3280A, enhance T-cell response and 
sensitivity to cancer by inhibiting PD-1 and PD-L1 binding [53]. 

To ensure immunological memory [54], a portion of 
effector T-lymphocytes differentiates into effector memory 
T-lymphocytes. These cells are responsible for combating 
diseases that recur. Reactivation and clonal proliferation of 
memory T-cells present in the TME are needed for immune 
responses against tumors following PD-1/PD-L1 blockade 
[55,56]. Tumour-specifi c CD8+ T-cells then differentiate into 
effector T-cells, proliferate, migrate to the TME, and destroy 
tumor cells that present tumor-associated antigen on HLA by 
releasing cytolytic effector molecules [55]. 

Although these blockades aid in the prevention of T-cell 
fatigue, they can sometimes cause side effects known as 
“Immune-related adverse events (IrAEs).”

Immune checkpoint blockades toxicity 

The toxicity of this cancer immunotherapy alternative has 
been a signifi cant challenge and source of concern [6]. IrAEs 
from ICPIs are caused by a lack of T-cell inhibition, which 
results in decreased self-tolerance. Checkpoint drugs also 
cause hyperprogression that can be Fc receptor mediated. 
Hyperprogressive disease (HPD) is associated with the use 
of immune checkpoint inhibitors (ICI). HPD-associated -ICI 
has been reported by multiple groups in various cancer types 
and this has been linked with a shorter progression free 
survival and overall survival [57]. The most common irAEs 
linked to anti-CTLA-4 Ab use can affect any organ system, 
but gastrointestinal, dermatologic, hepatic, and endocrine 
toxicities are the most common [58]. These side effects can 
be treated, but in some situations they can be fatal [50,59,60]. 
These side effects were observed in two-thirds of patients 
treated with ipilimumab, and signifi cant toxicities were found 
in one-tenth to one-fi fth of the patient population [50].

After cancer therapy, the initiation of suspected irAEs must 
be timed carefully. The skin effect in melanoma patients treated 
with ipilimumab normally appears within the fi rst few weeks 
of treatment. Diarrhoea and colitis, on the other hand, typically 
appear between the fi fth and tenth weeks, liver toxicity between 
weeks seven and fourteen, and hypophysitis after six weeks 
[58]. The majority of ipilimumab-related irAEs occur during 
the induction period [61], but some patients who are exposed to 
ICPIs may experience late-onset irAEs after treatment [62,63]. 
When compared to anti-CTLA-4 Ab like ipilimumab, PD-1 
inhibitors like nivolumab and pembrolizumab have a lower 
incidence of irAEs [64]. Pembrolizumab also has a nine-week 
median initiation of mild to extreme toxicity, compared to six 
weeks for ipilimumab [23]. The combination of nivolumab and 
ipilimumab would result in a higher rate of irAEs than either 
drug alone.

In comparison to ipilimumab, pembrolizumab has a nine-
week median onset of moderate to severe toxicity, compared 
to six weeks for ipilimumab [23]. Nivolumab and ipilimumab 
in combination would result in a higher incidence of irAEs 
than either drug alone [58]. In the following chapters, we’ll 
go through the dermatological, endocrine (endocrinopathy), 

hepatic (hepatoxicity), and diarrhoea/enterocolitis-related 
toxicity of ICPIs.

Dermatologic toxicity 

Maculopapular rash, erythematous rash, and pruritus are 
the most common dermatologic toxicities [6]. Dermatologic 
toxicity is most common in the fi rst few weeks of treatment 
[42], but it has also been noted to appear later [65]. It is more 
common in advanced melanoma patients than in patients with 
other cancers. In a meta-analysis of patients treated with 
ipilimumab, Minikis et al. found that 24.3 percent developed a 
rash, with 2.4 percent being high-grade. Anti-CTLA-4 and anti-
PD-1 mAbs have been linked to vitiligo, a skin condition. Abs 
clinical trials [67] can also be found and is generally considered 
a good prognostic factor in patients with melanoma; it occurs 
through the production of anti-melan-A T-lymphocytes 
unique to an anti-melanoma immune response; it occurs 
through the development of anti-melan-A T-lymphocytes 
specifi c to an anti-melanoma immune response [68]. Despite 
the rarity of serious skin toxicity, Stevens-Johnson syndrome, 
toxic epidermal necrolysis, and drug rash with eosinophilia 
and systemic symptoms have been reported [69]. The highest 
rates of serious skin toxicity are seen with combination 
immunotherapy [44]. Immunosuppressive treatment should 
be stopped in this case; topical steroids may be effective for 
mild symptoms, but prednisolone may be used in extreme 
cases. Even, emollient creams, avoidance of additives and sun 
safety were recommended preventive measures for all patients 
[12].

Endocrinopathy

Endocrine toxicity caused by ICPIs can range from 
asymptomatic changes in thyroid function tests to adrenal 
problems. Endocrinopathy may be mistaken for other disorders 
such as brain metastasis, sepsis, or disease progression because 
of its non-specifi c symptoms. Endocrine toxicity normally 
appears after 10 weeks with nivolumab and seven weeks with 
ipilimumab [42,70]. Hypophysitis and hypothyroidism are 
the most common endocrinopathies associated with immune 
checkpoint inhibitor therapy [67]. It is also recommended that 
thyroid functions be adequately assessed before starting ICPI 
treatment. 

Fatigue, headaches, and visual fi eld defects are common 
symptoms of hypophysitis, and its diagnosis is based on pituitary 
hormone levels (ACTH, TSH, FSH, LH, GH, and prolactin) [71]. 
Patients with hypophysitis caused by ipilimumab may be 
given pembrolizumab [72]. Hypophysitis is characterized by 
a reduced TSH and a low free T4, whereas hypothyroidism is 
diagnosed by an elevated TSH and a low free T4. It’s also worth 
noting that primary hyperthyroidism has a lower frequency of 
CTLA-4 and PD-1 inhibition than hypothyroidism [67].

Hepatotoxicity

Various ICPI trials have used the words hepatitis, elevated 
transaminases, and bilirubin to characterize liver dysfunction, 
which normally occurs between 6 and 14 weeks after starting 
therapy [12]. According to Viladolid and Amin [67], both CTLA-4 
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and PD-1 inhibitors induce autoimmune hepatotoxicity, which 
presents as elevated transaminases and complete bilirubin, 
with a median onset of 8-12 weeks after treatment initiation.

Anti-PD-1 agents cause hepatitis in 1–6% of patients, while 
ipilimumab and the combination cause hepatitis in 1–7% and 
30% of patients, respectively [23,44,60]. In patients with ALT 
or AST levels greater than fi ve times the upper limit of normal, 
steroid therapy should be used [12]. As a result, a liver function 
test is needed before each dose of ipilimumab, nivolumab, or 
pembrolizumab to control hepatic function [42,73].

Diarrhoea/Enterocolitis 

Diarrhoea and colitis may occur six weeks after starting 
ICPIs, and the dosage of ipilimumab appears to be a factor 
[50,51]. Following ipilimumab therapy, patients who were given 
PD-1 blockers did not experience diarrhoea or colitis [42,72]. 
Often, following pembrolizumab treatment, hyperglycemia 
from type 1 diabetes mellitus occurs, and a case of diabetic 
ketoacidosis complicates nivolumab therapy [74,75]. 

Though enteritis has been linked to CTLA-4 inhibitors, 
it is uncommon [70]. The word “colitis” refers to diarrhoea 
that is accompanied by abdominal pain, rectal bleeding or 
mucous, or large bowel infl ammation. Patients treated with 
both ipilimumab and nivolumab would have median onset 
of diarrhoea at 7 weeks, according to Bristol Meyers Squibb 
[76] product information, while Merck-Sharp [76] product 
information states that it tends to be about 6 months with 
pembrolizumab [77-83]. If diarrhoea or colitis recurs after 
treatment, the ICPI should be discontinued [12]. 

Conclusion and future direction

Cancer immunotherapy is considered as one with precision 
due to its specifi city in action. It is presumed safer than the 
traditional therapeutic options, as discussed earlier. While 
biomarkers for predicting patients’ response to immunotherapy 
could be researched, in-depth understanding of cancer immune 
evasion will help develop effective Immune-checkpoint 
inhibitors. IrAEs are a common side effect of ICPIs, some of 
which are serious but are normally reversible if detected early. 
A focus on combined therapies that will aid the inhibitors’ 
effectiveness while reducing irAEs to the barest minimum is 
essential. Majority of operations evident on the immunological 
scale has a genomic stand-point. Hence, genome sequencing 
technology seems to be a promising approach to studies on the 
immune system function and dysfunction; immunogenomic 
research on cancer will help reveal mechanisms behind 
the action and response of tumour infi ltrating effector 
T-lymphocytes, and also the synthesis and corrections of 
genes coding for immune cells. This approach will engender 
enhanced advancement in cancer immunotherapy.
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