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Abstract

Oncolytic virotherapy is a cancer treatment that uses viruses to selectively infect and destroy cancer cells while leaving healthy cells unharmed. These viruses, known 
as oncolytic viruses, replicate within tumor cells, causing them to lyse (burst) and release new viral particles that can infect surrounding cancer cells. This process also 
releases tumor antigens, which can trigger an immune response against the cancer. The dynamics of Oncolytic virotherapy are highly nonlinear. Bifurcation analysis 
is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must be met 
simultaneously. Bifurcation analysis and multiobjective nonlinear model predictive control (MNLMPC) calculations are performed on three oncolytic dynamic models. 
The MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in 
conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of a Hopf bifurcation point in one 
of the models and branch points in all three models. The Hopf bifurcation point was eliminated using an activation factor that involves the tanh function. The branch 
points (which cause multiple steady-state solutions from a singular point) are very benefi cial because they enable the Multiobjective nonlinear model predictive control 
calculations to converge to the Utopia point (the best possible solution) in the models. It is proven (with computational validation) that the branch points were caused 
because of the existence of two distinct separable functions in one of the equations in each dynamic model. A theorem was developed to demonstrate this fact for any 
dynamic model.
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1. Background 

Mullen, et al. [1] describe the mechanism of viral oncolysis, 
while Chiocca [2] presents several oncolytic viruses, and 
Aghi, et al. [3] discuss the various oncolytic viral therapies. 
Novozhilov, et al. [4] mathematically modeled tumor therapy 
with oncolytic viruses. Kelly and Russell [5] present the history 
of oncolytic viruses from genesis to genetic engineering. 
Alonso, et al. [6] showed that the combination of the oncolytic 
adenovirus ICOVIR-5 with chemotherapy provides an enhanced 
anti-glioma effect. Zurakowski and Wodarz [7] discuss various 
model-driven approaches for in vitro combination therapy 
using ONYX-015 replicating oncolytic adenovirus. Wong, et al. 
[8] present strategies for overcoming the obstacles in using 
oncolytic viruses for cancer therapy. Ottolino, et al. [9] provide 
intelligent designs combining therapy with oncolytic viruses. 

Komarova and Wodarz [10] present ODE models for oncolytic 
virus dynamics. Eager and J. Nemunaitis [11] researched the 
various clinical development directions in oncolytic viral 
therapy. Agarwal and Bhadauria [12] modelled and analyzed 
tumor therapy with an oncolytic virus. Bagheri, et al. [13] 
provide a dynamical systems model for combinatorial cancer 
therapy that enhances oncolytic adenovirus effi cacy by MEK-
inhibition. Tian [14] shows the replicability of oncolytic virus, 
defi ning conditions in tumor virotherapy. Donnelly, et al. 
[15] present the recent clinical experiences with oncolytic 
viruses. Russell, et al [16] provide a discussion of oncolytic 
virotherapy. Zhou, et al. [17] present the clinical research 
progress for oncolytic adenovirus targeting cancer therapy. 
Patel and Kratzke [18] discuss the fi rst wave of translational 
clinical trials in oncolytic virus therapy for cancer. Wang, et al. 
[19] show that the lytic cycle is a defi ning process in oncolytic 
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virotherapy. Kim, et al. [20] discuss the quantitative impact 
of immunomodulation versus oncolysis with a cytokine-
expressing virus therapeutic. Si and Zhang [21] discuss the 
control exponential growth of tumor cells with the slow spread 
of an oncolytic virus. Chen and Su [22] provide an improved 
model of tumor therapy with an oncolytic virus. Simpson, et al. 
[23] discussed the recent advances in cancer immunotherapy 
via combining oncolytic virotherapy with chemotherapy. 
Su, et al. [24] developed an optimal control model of tumor 
treatment with oncolytic virus and MEK Inhibitor. Malinzi, 
et al. [25] developed a mathematical and optimal control 
analysis on the enhancement of chemotherapy using oncolytic 
virotherapy. Adi-Kusumo, et al. [26] showed the existence of a 
Hopf Bifurcation on a cancer therapy model by oncolytic virus 
involving the malignancy effect and therapeutic effi cacy. This 
work aims to perform bifurcation analysis and multiobjective 
nonlinear control (MNLMPC) studies in three oncolytic virus 
models, which are discussed in Adi-Kusumo, et al. [26] (model 
1) Su, et al. [24](model 2), and Malinzi, et al. [25](model 3). 
The paper is organized as follows. First, the model equations 
are presented, followed by a discussion of the numerical 
techniques involving bifurcation analysis and multiobjective 
nonlinear model predictive control (MNLMPC). The results are 
then presented, followed by the discussion and conclusions.

2. Model equations 

Model 1 [26]

The ODE set representing the fi rst model is 

 
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xval and yval represent the uninfected cancer cells and the 
infected ones by oncolytic viruses. 

The base parameters are 
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xval, 𝑦val, and vval stand for the population of uninfected 

cells, infected tumor cells, and oncolytic viruses, and zval 
represents the average expression level of CAR on the surface 
of the cells. The base parameter values are

 0.2; 0.009; 0.5; 6; 0.5; 10; 0.1; 0.5;
9. 08; 4.

r pval g c
k e b
          
    

Model 3 Malinzi, et al. [25]
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Here, (uval, iva, vval,cval) represent the uninfected tumour 
density, virus-infected tumour cell density, free virus particles, 
and drug concentration, respectively. u1 and u2 are the control 
parameters. 

The base parameter values are 

1. 06; 0.206; 0.01; 0.5115; 0.01; 500;
4.17; 50; 60; 1. 05; 1. 05; 1 0.5; 2 0.5u i

k e b
ku e kc e u u

   
  
      
          

3. Bifurcation analysis 

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT [27,28]. This program 
detects Limit points (LP), branch points (BP), and Hopf 
bifurcation points(H) for an ODE system 

( , )dx f x
dt

                  (4)

x ∈ Rn Let the bifurcation parameter be α. Since the gradient 
is orthogonal to the tangent vector, 

The tangent plane at any point must satisfy. 

0Az                      (5)

Where A is 

[ / | / ]A f x f                       (6)

Where is the Jacobian matrix? For both limit and branch 
points, the matrix must be singular. The n+1th component of 
the tangent vector Zn+1 = 0 for a limit point (LP), and a branch 
point (BP), the matrix must be singular. At a Hopf bifurcation 
point, 

det(2 ( , )@ ) 0x nf x I                      (7)
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@ indicates the bialternate product while is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and 
should be eliminated because limit cycles make optimization 
and control tasks very diffi cult. More details can be found in 
Kuznetsov [29,30] and Govaerts [31]. 

Hopf bifurcations cause unwanted oscillatory behavior and 
limit cycles. The tanh activation function (where a control 
value u is replaced by ) (u tanh u/ε) is commonly used in neural 
nets [32-34] and optimal control problems [35] to eliminate 
spikes in the optimal control profi le. Hopf bifurcation points 
cause oscillatory behavior. Oscillations are similar to spikes, 
and the results in Sridhar [36] demonstrate that the tanh 
factor also eliminates the Hopf bifurcation by preventing the 
occurrence of oscillations. Sridhar [36] explained with several 
examples how the activation factor involving the tanh function 
successfully eliminates the limit cycle causing Hopf bifurcation 
points. This was because the tanh function increases the period 
of the oscillatory behavior, which occurs in the form of a limit 
cycle caused by Hopf bifurcations. 

4. Multiobjective Nonlinear Model Predictive 
Control (MNLMPC) 

Flores Tlacuahuaz, et al. [37] developed a multiobjective 
nonlinear model predictive control (MNLMPC) method that is 
rigorous and does not involve weighting functions or additional 
constraints. This procedure is used for performing the MNLMPC 

calculations. Here 
0

( )
i f

i

t t

j i
t
q t





  (j = 1, 2..n) represents the variables 

that need to be minimized/maximized simultaneously for a 
problem involving a set of ODEs. 

( , )dx F x u
dt

                (8)

tf Being the fi nal time value, n is the total number of objective 
variables, and u is the control parameter. This MNLMPC 
procedure fi rst solves the single-objective optimal control 
problem, independently optimizing each of the variables. The 
minimization/maximization of will lead to the values. Then the 
optimization problem that will be solved is 

0

* 2

1

min( ( ( ) ))

( , );

i f

i

t tn

j i j
j t

q t q

dxsubject to F x u
dt











 
             (9)

This will provide the values of u at various times. The fi rst 
obtained control value of u is implemented, and the rest are 
discarded. This procedure is repeated until the implemented 
and the fi rst obtained control values are the same, or if the 

Utopia point where (
0

*( )
i f

i

t t

j i j
t

q t q




  for all j) is obtained. 

Pyomo [38] is used for these calculations. Here, the 
differential equations are converted to a Nonlinear Program 

(NLP) using the orthogonal collocation method. The NLP is 
solved using IPOPT [39] and confi rmed as a global solution 
with BARON [40]. 

The steps of the algorithm are as follows. 

1. Optimize and obtain at various time intervals, ti. The 
subscript i is the index for each time step. 

2. Minimize 
0

* 2

1

( ( ( ) ))
i f

i

t tn

j i j
j t

q t q






  and get the control 

values for various times.

3. Implement the fi rst obtained control values. 

4. Repeat steps 1 to 3 until there is an insignifi cant 
difference between the implemented and the fi rst 
obtained value of the control variables or if the Utopia 
point is achieved. The Utopia point is when for all j. 

Sridhar [41] proved that the MNLMPC calculations 
converge to the Utopia solution when the bifurcation analysis 
revealed the presence of limit and branch points. This was 
done by imposing the singularity condition on the co-state 
equation [42]. If the minimization of lead to the value and the 
minimization of lead to the value, the MNLPMC calculations 
will minimize the function. The multiobjective optimal control 
problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
                (10)

Differentiating the objective function results in 

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )

i i i

d d dq q q q q q q q q q q q
dx dx dx

           

                 (11)

The Utopia point requires that both are zero. Hence  

* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx

                    (12)

The optimal control co-state equation [42] is 

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

        
  

                  (13)

λi Is the Lagrangian multiplier. Is this the fi nal time? The 
fi rst term in this equation is 0, and hence. 

( ) ; ( ) 0i x i i f
d f t
dt

                     (14)

At a limit or a branch point, the set of ODE ( , )dx f x u
dt

  fx is 

singular. Hence, there are two different vector values for where 
and. In between, there is a vector where. This, coupled with the 
boundary condition, will lead to. This makes the problem an 
unconstrained optimization problem, and the only solution is 
the Utopia solution. 
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5. Results 

Model 1

When pval was used as the bifurcation parameter, a Hopf 
bifurcation point was located at (xval, yval, pval) values of 
(3.086053, 55.448945, -0.898380). This is shown in Figure 1a. 
The limit cycle caused by this Hopf bifurcation point is shown 
in Figure 1b. When pval was changed to pval(tanh(pval)), the 
Hopf bifurcation point disappears, validating the analysis in 
Sridhar [36] where it is demonstrated with several examples 
that the activation factor involving the tanh function 
successfully eliminates the limit cycle causing Hopf bifurcation 
points. This is shown in Figure 1c. When r2 was used as the 
bifurcation parameter, a branch point was located at 

(xval, yval, r2) values of ( 0.000000 50.049900 4.003996 ). 
This is shown in Figure 1d. 

For the MNLMPC calculations, 
0 0

( ), ( )
i f i f

i i

t t t t

i i
t t
xval t yval t

 

 

   were 

minimized individually and led to values of 200 and 0. pval 
was the control parameter. The multiobjective optimal control 
problem will involve the minimization of the subject to the 
equations governing Model 1. This led to a value of zero (the 
Utopia solution). The MNLMPC value of pval was 0.54427. 
Figures 1e-1g show the various MNLMPC profi les.

Model 2

In model 2, when bifurcation analysis was performed, with 
u as a parameter, a branch point was located at (xval, yval, 
vval,zval,u) values of ( 9.e + 08, 0,0, 1.043561, 0.582576 ). This 
is seen in Figure 2a. 

For the MNLMPC calculations, xval(0) was set 
as 400 and was minimized individually, yielding 
values of 400, 0, and 0. The multiobjective optimal 
control problem will involve the minimization of the 

Figure 1a: Bifurcation Analysis in Model 1, indicating Hopf bifurcation.

Figure 1c: Bifurcation Analysis in Model 1 (Hopf bifurcation eliminated by tanh 
activation function).

Figure 1b: Bifurcation Analysis in Model 1, indicating a limit cycle caused by a Hopf 
bifurcation.

Figure 1d: Bifurcation Analysis in Model 1, indicating Branch Point.

Figure 1e: MNLMC( Model 1) yval vs t

Figure 1f: MNLMC (Model 1) xval vs. t.
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0 0 0

2 2 2( ( ) 400) ( ( ) 0) ( ( ) 0)
i f i f i f

i i i

t t t t t t

i i i
t t t
xval t yval t vval t

  

  

       subject 

to the equations governing Model 2. This led to a value of 
zero (the Utopia solution). The MNLMPC value of u was 0.932. 
Figures 2b-2d, and 2e show the various MNLMPC profi les for 
Model 2.

Model 3

In model 3, when bifurcation analysis was performed, with 
as a parameter, a branch point was located at values of. (0, 50, 
0, 0.119904, 0.000065). Additionally, a limit point was found at 
values of (0.009703, 50.002421, 0, 0.119904, 0.000065). This is 
shown in Figure 3a. 

Figure 1g: MNLMC (Model 1) pval vs. t.

Figure 2a: Bifurcation Analysis in Model 2, indicating a branch point.

Figure 2b: MNLMC (Model 2) xval vs. t.

Figure 2c: MNLMC (Model 2) yval vs. t.

Figure 2d: MNLMC (Model 2) vval vs. t.

Figure 2e: MNLMC (Model 2) u vs. t.

Figure 3a: Bifurcation Analysis in Model 3 indicating Branch Point and limit point.
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For the MNLMPC calculations, uval(0) was set as 1000, 
ival(0) was set as 75. They were minimized individually, yielding 
values of 6.1539610796052817e+04 and 75. The multiobjective 
optimal control problem will involve the minimization of the 

0 0

2 2( ( ) 6.1539610796052817e+04) ( ( ) 75)
i f i f

i i

t t t t

i i
t t
vval t ival t

 

 

   

subject to the equations governing Model 3. This led to a value 
of zero (the Utopia solution). The MNLMPC value of u1 and 
u2 (the two control parameters) were 7.863627108510299e-
07 and 16.542884153050405. Figures 3b-3g show the various 
MNLMPC profi les for Model 3.

6. Discussion of results

Model 1 exhibits a Hopf bifurcation point, which is 
eliminated using an activation factor involving a tanh function, 
validating the analysis in Sridhar [36]. All three models exhibit 
branch points. These branch points enable the MNLMC 
calculations to yield the Utopia solution, validating the analysis 
in Sridhar [41]. The following paragraphs explain the cause of 
the occurrence of the branch points. 

Figure 3b: MNLMPC in Model 3 vval vs. t.

Figure 3c: MNLMPC in Model 3 ival vs. t.

Figure 3d: MNLMPC in Model 3 cval vs. t.

Figure 3e: MNLMPC in Model 3 uval vs. t.

Figure 3f: MNLMPC in Model 3 u1 vs. t.

Figure 3g: MNLMPC in Model 3 u2 vs. t.
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Theorem 

If one of the functions in a dynamic system is separable 
into two distinct functions, a branch point singularity will 
occur in the system. 

Proof 

Consider a system of equations. 

( , )dx f x
dt

                  (15)

x ∈ Rn . Defi ning the matrix A as 

1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2

1 2 3 4

..........

..........

...........................................................

.................................................
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f f f f f f
x x x x x
f f f f f f
x x x x x

A





     
     

     
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

1 2 3 4

..........

..........n n n n n n

n

f f f f f f
x x x x x 

 
 
 
 
 
 
 
 
 
       
      
 
 

                        (16)

α Is the bifurcation parameter. The matrix A can be written 
in a compact form as 

[ . | ]p p

q

f f
A

x 
 


 

                (17)

The tangent at any point x; ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z  ) must 
satisfy 

0Az                    (18)

The matrix must be singular at both limit and branch 
points. The n+1th component of the tangent vector Zn+1 = 0 at a 
limit point (LP), and for a branch point (BP), the matrix must 
be singular. 

Any tangent at a point y that is defi ned by 

1 2 3 4 1[ , , , ,.... ]nz z z z z z  ) must satisfy. 

0Az                                 (19)

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w. This implies that 

0
0

Az
Aw




               (20)

Consider a vector v that is orthogonal to one of the tangents 
(say z). v can be expressed as a linear combination of z and w (

v z w   ). Since z and v are orthogonal, 

0Tz v  . Hence, this implies that B is singular. 

Let any of the functions fi be separable into 2 functions 1, 
2 as 

1 2if                  (21)

At steady-state ( , ) 0if x   and this will imply that either or 
both must be 0. This implies that the two branches will meet at 
a point where both are 0. 

At this point, the matrix B will be singular, as a row in this 
matrix would be 

[ | ]i i

k

f f
x 
 
                (22)

However, 

2 1
1 2

2 1
1 2

[ ( 0) ( 0) 0( 1.,, )

( 0) ( 0) ] 0

i

k k k

i

f k n
x x x
f

  

  
  

  
      

  
  

    
  

            (23)

This implies that every element in the row would be 0, and 
hence the matrix B would be singular. The singularity in B 
implies that there exists a branch point. 

In model 1, a branch point was located at 

(xval, yval) values of ( 0.000000 50.049900 ). Here, the two 
distinct functions can be obtained from the fi rst equation in 
Model 1 

 1
( ) ( ( ) ( )) ( )( )(1 ) .d xval pval xval qval yval b xval yvalr xval
dt k xval yval a


  

 
  

                (24)

The 2 distinct function branches are 

0xval                   (25)

and 

 1
( ( ) ( )) ( )(1 ) 0pval xval qval yval b yvalr

k xval yval a


  
           (26)

The values satisfy both the above equations, confi rming the 
correctness of the theorem.

In model 2, a branch point was located at (xval, yval, 
vval,zval,u) values of ( 9.e+08; 0;0; 1  .043561 0.582576 ). The 
two distinct functions can be seen from the second equation of 
Model 2, 

   ( 1( ) ( ) ) xval yval zval u yval
xval yval

d yval
dt





 

   
 

 
               (27)

Here, the two distinct function branches are 

0yval                   (28)

and 

   ( )( ) 1xval zval u
xval yval




 
  

 


             (29)
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Substituting

0.2; 0.009; 0.5; 9.0 08; 1.043561 u=0.582576 0;xval e zval yval        
 

Satisfi es both the above equations, confi rming the 
correctness of the theorem.

In model 3, a branch point was located at values of. (0, 50, 
0, 0.119904, 0.000065) and the two distinct branches can be 
obtained from the fi rst equation in model 3, which is 

 
 

( ) ( ) ( )( ) 1  uuval ivald uval uval vval uval cvaluval
dt k ku uval kc cval

 
      

   


               
  

                  (30)

These 2 branches are 

0uval                  (31)

and

 
 

 1  0uuval ival vval cval
k ku uval kc cval

 


  
                        

     (32)

Substituting

 1. 06; 0.01; 50; 1. 05; 1. 05;
uval=0,  vval=50,  ival=0,  cval=0.119904,  0.000065

uk e ku e kc e 


       


 

Satisfi es both the above equations, confi rming the 
correctness of the theorem.

Conclusion

Bifurcation analysis and multiobjective nonlinear control 
(MNLMPC) studies in three oncolytic virus models. The 
bifurcation analysis revealed the existence of a Hopf bifurcation 
point in one of the models and branch points in all three models. 
The Hopf bifurcation point was eliminated using an activation 
factor that involves the tanh function. The branch points (which 
cause multiple steady-state solutions from a singular point) 
are very benefi cial because they enable the Multiobjective 
nonlinear model predictive control calculations to converge 
to the Utopia point (the best possible solution) in the models. 
It is proven (with computational validation) that the branch 
points were caused because of the existence of two distinct 
separable functions in one of the equations in each dynamic 
model. A theorem was developed to demonstrate this fact for 
any dynamic model. A combination of bifurcation analysis and 
Multiobjective Nonlinear Model Predictive Control(MNLMPC) 
for dynamic models involving oncolytic viral therapy is the 
main contribution of this paper. 

Data availability statement

All data used is presented in the paper

Confl ict of interest 

The author, Dr. Lakshmi N Sridhar, has no confl ict of 
interest.

Acknowledgement 

Dr. Sridhar thanks Dr. Carlos Ramirez and Dr. Suleiman for 
encouraging him to write single-author papers.

References

1. Mullen JT, Tanabe KK. Viral oncolysis. Oncologist. 2002;7(2):106-19. 
Available from: https://doi.org/10.1634/theoncologist.7-2-106

2. Chiocca EA. Oncolytic viruses. Nat Rev Cancer. 2002;2(12):938-50. Available 
from: https://doi.org/10.1158/2326-6066.cir-14-0015

3. Aghi M, Martuza RL. Oncolytic viral therapies - the clinical experience. 
Oncogene. 2005;24(52):7802-16. Available from: https://doi.org/10.1038/
sj.onc.1209037

4. Novozhilov AS, Berezovskaya FS, Koonin EV, Karev GP. Mathematical 
modeling of tumor therapy with oncolytic viruses: regimes with complete 
tumor elimination within the framework of deterministic models. Biol Direct. 
2006;1:6. Available from: https://doi.org/10.1186/1745-6150-1-6

5. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic 
engineering. Mol Ther. 2007;15(4):651-9. Available from: https://doi.
org/10.1038/sj.mt.6300108

6. Alonso M, Gomez-Manzano C, Jiang H, Bekele NB, Piao Y, Yung WKA, et 
al. Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy 
provides enhanced anti-glioma effect in vivo. Cancer Gene Ther. 
2007;14:756–61. Available from: https://doi.org/10.1038/sj.cgt.7701067

7. Zurakowski R, Wodarz D. Model-driven approaches for in vitro combination 
therapy using ONYX-015 replicating oncolytic adenovirus. J Theor Biol. 
2007;245(1):1–8. Available from: https://doi.org/10.1016/j.jtbi.2006.09.029

8. Wong HH, Lemoine N, Wang Y. Oncolytic viruses for cancer therapy: 
overcoming the obstacles. Viruses. 2010;2(1):78–106. Available from: 
https://doi.org/10.3390/v2010078

9. Ottolino PK, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: 
combination therapy with oncolytic viruses. Mol Ther. 2010;18:251–63. 
Available from: https://doi.org/10.1038/mt.2009.283

10. Komarova NL, Wodarz D. ODE models for oncolytic virus dynamics. J 
Theor Biol. 2010;263(4):530–43. Available from: https://doi.org/10.1016/j.
jtbi.2010.01.009

11. Eager RM, Nemunaitis J. Clinical development directions in oncolytic viral 
therapy. Cancer Gene Ther. 2011;18(5):305–17. Available from: https://www.
nature.com/articles/cgt20117

12. Agarwal M, Bhadauria AS. Mathematical modelling and analysis of tumor 
therapy with oncolytic virus. Appl Math. 2011;2(1):131–40. Available from: 
https://www.scirp.org/journal/paperinformation?paperid=3819

13. Bagheri N, Shiina M, Lauffenburger DA, Korn WM. A dynamical systems 
model for combinatorial cancer therapy enhances oncolytic adenovirus 
effi  cacy by MEK-inhibition. PLoS Comput Biol. 2011;7(2):e1001085. Available 
from: https://doi.org/10.1371/journal.pcbi.1001085

14. Tian JP. The replicability of oncolytic virus: defi ning conditions in tumor 
virotherapy. Math Biosci Eng. 2011;8:841–60. Available from: https://doi.
org/10.3934/mbe.2011.8.841

15. Donnelly OG, Errington-Mais F, Prestwich R, Harrington K, Pandha H, 
Vile R, et al. Recent clinical experience with oncolytic viruses. Curr 
Pharm Biotechnol. 2012;13(9):1834–41. Available from: https://doi.
org/10.2174/138920112800958904

16. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 
2012;30(7):658–70. Available from: https://doi.org/10.1038/nbt.2287



009

https://www.cancerresgroup.us/journals/global-journal-of-cancer-therapy

Citation: Sridhar LN. Analysis and Control of Oncolytic Virotherapy Dynamic Models. Glob J Cancer Ther. 2025;11(1):001-009. 
Available from: https://dx.doi.org/10.17352/2581-5407.000054

17. Zhou L, He WW, Zhu ZN. The clinical research progress for oncolytic 
adenovirus targeting cancer therapy. China Biotechnol. 2013;33(12):105–13.

18. Patel MR, Kratzke RA. Oncolytic virus therapy for cancer: the fi rst wave of 
translational clinical trials. Transl Res. 2013;161(4):355–64. Available from: 
https://doi.org/10.1016/j.trsl.2012.12.010

19. Wang Y, Tian JP, Wei J. Lytic cycle: a defi ning process in oncolytic 
virotherapy. Appl Math Model. 2013;37(8):5962–78. Available from: https://
doi.org/10.1016/j.apm.2012.12.004

20. Kim PS, Crivelli JJ, Choi IK, Yun CO, Wares JR. Quantitative impact of 
immunomodulation versus oncolysis with cytokine-expressing virus 
therapeutic. Math Biosci Eng. 2015;12(4):841–58. Available from: https://doi.
org/10.3934/mbe.2015.12.841

21. Si W, Zhang W. Control exponential growth of tumor cells with slow spread of 
oncolytic virus. J Theor Biol. 2015;367:111–29. Available from: https://doi.
org/10.1016/j.jtbi.2014.11.015

22. Chen Y, Su YM. An improved model of tumor therapy with oncolytic virus. J 
Henan Univ Sci Technol. 2016;37(4):92–6.

23. Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer 
immunotherapy via combining oncolytic virotherapy with chemotherapy: 
recent advances. Oncolytic Virother. 2016;5:1–13. Available from: https://
doi.org/10.2147/ov.s66083

24. Su Y, Jia C, Chen Y. Optimal control model of tumor treatment with oncolytic 
virus and MEK inhibitor. Biomed Res Int. 2016;2016:5621313. Available from: 
https://doi.org/10.1155/2016/5621313

25. Malinzi J, Ouifki R, Eladdadi A, Torres DFM, White JKA. Enhancement of 
chemotherapy using oncolytic virotherapy: mathematical and optimal control 
analysis. Math Biosci Eng. 2018;15(6):1435–63. Available from: https://doi.
org/10.3934/mbe.2018066

26. Adi-Kusumo F, Aryati L, Risdayati S, Norhidayah S. Hopf bifurcation on a 
cancer therapy model by oncolytic virus involving the malignancy effect and 
therapeutic effi  cacy. Int J Math Math Sci. 2020;2020(1):4730715. Available 
from: https://doi.org/10.1155/2020/4730715

27. Dhooge A, Govaerts W, Kuznetsov AY. MATCONT: A Matlab package 
for numerical bifurcation analysis of ODEs. ACM Trans Math 
Softw. 2003;29(2):141–64. Available from: https://lab.semi.ac.cn/
download/0.28315849875964405.pdf

28. Dhooge A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM. CL_MATCONT: 
A continuation toolbox in Matlab. 2004. Available from: https://doi.
org/10.1145/952532.952567

29. Kuznetsov YA. Elements of applied bifurcation theory. New York: Springer; 
1998. Available from: https://www.ma.imperial.ac.uk/~dturaev/kuznetsov.
pdf

30. Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht 
University; 2009.

31. Govaerts WJF. Numerical methods for bifurcations of dynamical equilibria. 
Philadelphia: SIAM; 2000. Available from: https://epubs.siam.org/doi/
pdf/10.1137/1.9780898719543.fm

32. Dubey SR, Singh SK, Chaudhuri BB. Activation functions in deep learning: a 
comprehensive survey and benchmark. Neurocomputing. 2022;503:92–108. 
Available from: https://doi.org/10.1016/j.neucom.2022.06.111

33. Kamalov AF, Nazir M, Safaraliev AK, Cherukuri, Zgheib R. Comparative 
analysis of activation functions in neural networks. In: 2021 28th IEEE 
International Conference on Electronics, Circuits, and Systems (ICECS); 2021; 
Dubai, United Arab Emirates. p. 1–6. Available from: https://ieeexplore.ieee.
org/document/9665646

34. Szandała T. Review and comparison of commonly used activation functions 
for deep neural networks. ArXiv. 2020:203–24. Available from: https://link.
springer.com/chapter/10.1007/978-981-15-5495-7_11

35. Sridhar LN. Bifurcation analysis and optimal control of the tumor 
macrophage interactions. Biomed J Sci Tech Res. 2023;53(5):45218–
25. Available from: https://ideas.repec.org/a/abf/journl/
v53y2023i5p45218-45225.html

36. Sridhar LN. Elimination of oscillation causing Hopf bifurcations in 
engineering problems. J Appl Math. 2024;2(4):1826. Available from: https://
ojs.acad-pub.com/index.php/JAM/article/view/1826

37. Flores-Tlacuahuac A, Morales P, Riveral Toledo M. Multiobjective nonlinear 
model predictive control of a class of chemical reactors. Ind Eng Chem Res. 
2012;51:5891–9. Available from: https://pubs.acs.org/doi/abs/10.1021/
ie201742e

38. Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, 
et al. Pyomo – Optimization modeling in Python. 2nd ed. Vol. 67. Available 
from: https://link.springer.com/book/10.1007/978-3-030-68928-5

39. Wächter A, Biegler L. On the implementation of an interior-point fi lter line-
search algorithm for large-scale nonlinear programming. Math Program. 
2006;106:25–57. Available from: https://doi.org/10.1007/s10107-004-0559-y

40. Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to 
global optimization. Math Program. 2005;103(2):225–49. Available from: 
https://link.springer.com/article/10.1007/s10107-005-0581-8

41. Sridhar LN. Coupling bifurcation analysis and multiobjective nonlinear model 
predictive control. Austin Chem Eng. 2024;10(3):1107. Available from: 
https://austinpublishinggroup.com/chemical-engineering/fulltext/ace-v11-
id1107.pdf

42.  Upreti SR. Optimal control for chemical engineers. Boca Raton (FL): Taylor & 
Francis; 2013.

 

 
 

https://www.peertechzpublications.org/submission


